You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
41 lines
1.6 KiB
41 lines
1.6 KiB
import keras |
|
from keras.engine import Input, Model |
|
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed |
|
|
|
|
|
def get_shared_cnn(vocab_size, embedding_size, input_length, filters, kernel_size, |
|
hidden_dims, drop_out): |
|
x = y = Input(shape=(input_length,)) |
|
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y) |
|
y = Conv1D(filters, kernel_size, activation='relu')(y) |
|
y = GlobalMaxPooling1D()(y) |
|
y = Dense(hidden_dims)(y) |
|
y = Dropout(drop_out)(y) |
|
y = Activation('relu')(y) |
|
return Model(x, y) |
|
|
|
|
|
def get_full_model(vocabSize, embeddingSize, maxLen, domainFeatures, flowFeatures, |
|
filters, h1, h2, dropout, dense): |
|
pass |
|
|
|
|
|
def get_top_cnn(cnn, numFeatures, maxLen, windowSize, domainFeatures, filters, kernel_size, cnnHiddenDims, cnnDropout): |
|
ipt_domains = Input(shape=(windowSize, maxLen), name="ipt_domains") |
|
encoded = TimeDistributed(cnn)(ipt_domains) |
|
ipt_flows = Input(shape=(windowSize, numFeatures), name="ipt_flows") |
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1) |
|
# add second cnn |
|
y = Conv1D(filters, |
|
kernel_size, |
|
activation='relu', |
|
input_shape=(windowSize, domainFeatures + numFeatures))(merged) |
|
# TODO: why global pooling? -> 3D to 2D |
|
# we use max pooling: |
|
y = GlobalMaxPooling1D()(y) |
|
y = Dropout(cnnDropout)(y) |
|
y = Dense(cnnHiddenDims, activation='relu')(y) |
|
y1 = Dense(2, activation='softmax', name="client")(y) |
|
y2 = Dense(2, activation='softmax', name="server")(y) |
|
|
|
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
|
|