11 lines
346 B
RPMSpec
11 lines
346 B
RPMSpec
|
axiom: forall X (is_int(X) <-> exists N X = N).
|
||
|
|
||
|
input: n -> integer, s/2, is_int/1.
|
||
|
|
||
|
assume: n >= 0.
|
||
|
assume: forall X, Y (s(X, Y) -> is_int(Y)).
|
||
|
|
||
|
assert: forall X (in(X) -> X >= 1 and X <= n).
|
||
|
assert: forall X (exists I s(X, I) -> exists I (in(I) and s(X, I))).
|
||
|
assert: forall I, J (exists X (s(X, I) and s(X, J)) and in(I) and in(J) -> I = J).
|