anthem-rs/src/translate/verify_properties.rs

230 lines
6.0 KiB
Rust

mod head_type;
mod translate_body;
use head_type::*;
use translate_body::*;
struct ScopedFormula
{
free_variable_declarations: foliage::VariableDeclarations,
formula: foliage::Formula,
}
struct Definitions
{
head_atom_parameters: std::rc::Rc<foliage::VariableDeclarations>,
definitions: Vec<ScopedFormula>,
}
struct Context
{
pub definitions: std::collections::BTreeMap::<std::rc::Rc<foliage::PredicateDeclaration>, Definitions>,
pub integrity_constraints: foliage::Formulas,
pub function_declarations: foliage::FunctionDeclarations,
pub predicate_declarations: foliage::PredicateDeclarations,
pub variable_declaration_stack: foliage::VariableDeclarationStack,
}
impl Context
{
fn new() -> Self
{
Self
{
definitions: std::collections::BTreeMap::<_, _>::new(),
integrity_constraints: vec![],
function_declarations: foliage::FunctionDeclarations::new(),
predicate_declarations: foliage::PredicateDeclarations::new(),
variable_declaration_stack: foliage::VariableDeclarationStack::new(),
}
}
}
struct StatementHandler
{
context: Context,
}
impl StatementHandler
{
fn new() -> Self
{
Self
{
context: Context::new(),
}
}
}
impl clingo::StatementHandler for StatementHandler
{
fn on_statement(&mut self, statement: &clingo::ast::Statement) -> bool
{
match statement.statement_type()
{
clingo::ast::StatementType::Rule(ref rule) =>
{
if let Err(error) = read_rule(rule, &mut self.context)
{
log::error!("could not translate input program: {}", error);
return false;
}
},
_ => log::debug!("read statement (other kind)"),
}
true
}
}
struct Logger;
impl clingo::Logger for Logger
{
fn log(&mut self, code: clingo::Warning, message: &str)
{
log::warn!("clingo warning ({:?}): {}", code, message);
}
}
pub fn translate(program: &str) -> i32
{
let mut statement_handler = StatementHandler::new();
match clingo::parse_program_with_logger(&program, &mut statement_handler, &mut Logger, std::u32::MAX)
{
Ok(()) => 0,
Err(error) =>
{
log::error!("could not translate input program: {}", error);
1
},
}
}
fn universal_closure(scoped_formula: ScopedFormula) -> foliage::Formula
{
match scoped_formula.free_variable_declarations.is_empty()
{
true => scoped_formula.formula,
false => foliage::Formula::for_all(scoped_formula.free_variable_declarations,
Box::new(scoped_formula.formula)),
}
}
fn read_rule(rule: &clingo::ast::Rule, context: &mut Context) -> Result<(), crate::Error>
{
use super::common::FindOrCreatePredicateDeclaration;
let head_type = determine_head_type(rule.head(),
|name, arity| context.predicate_declarations.find_or_create(name, arity))?;
let declare_predicate_parameters = |predicate_declaration: &foliage::PredicateDeclaration|
{
std::rc::Rc::new((0..predicate_declaration.arity)
.map(|_| std::rc::Rc::new(foliage::VariableDeclaration::new("<anonymous>".to_string())))
.collect())
};
match &head_type
{
HeadType::SingleAtom(head_atom)
| HeadType::ChoiceWithSingleAtom(head_atom) =>
{
if !context.definitions.contains_key(&head_atom.predicate_declaration)
{
context.definitions.insert(std::rc::Rc::clone(&head_atom.predicate_declaration),
Definitions
{
head_atom_parameters: declare_predicate_parameters(&head_atom.predicate_declaration),
definitions: vec![],
});
}
let definitions = context.definitions.get_mut(&head_atom.predicate_declaration).unwrap();
context.variable_declaration_stack.push(std::rc::Rc::clone(
&definitions.head_atom_parameters));
let mut definition_arguments = translate_body(rule.body(),
&mut context.function_declarations, &mut context.predicate_declarations,
&mut context.variable_declaration_stack)?;
assert_eq!(definitions.head_atom_parameters.len(), head_atom.arguments.len());
if let HeadType::ChoiceWithSingleAtom(_) = head_type
{
let head_arguments = definitions.head_atom_parameters.iter()
.map(|x| Box::new(foliage::Term::variable(x)))
.collect::<Vec<_>>();
let head_predicate = foliage::Formula::predicate(&head_atom.predicate_declaration,
head_arguments);
definition_arguments.push(Box::new(head_predicate));
}
let mut head_atom_arguments_iterator = head_atom.arguments.iter();
for head_atom_parameter in definitions.head_atom_parameters.iter()
{
let head_atom_argument = head_atom_arguments_iterator.next().unwrap();
let translated_head_term = crate::translate::common::choose_value_in_term(
head_atom_argument, head_atom_parameter, &mut context.function_declarations,
&mut context.variable_declaration_stack)?;
definition_arguments.push(Box::new(translated_head_term));
}
context.variable_declaration_stack.pop();
let mut free_variable_declarations = vec![];
std::mem::swap(&mut context.variable_declaration_stack.free_variable_declarations,
&mut free_variable_declarations);
let definition = foliage::Formula::And(definition_arguments);
let definition = ScopedFormula
{
free_variable_declarations,
formula: definition,
};
log::debug!("translated rule with single atom in head: {:?}", definition.formula);
definitions.definitions.push(definition);
},
HeadType::IntegrityConstraint =>
{
let arguments = translate_body(rule.body(),
&mut context.function_declarations, &mut context.predicate_declarations,
&mut context.variable_declaration_stack)?;
let mut free_variable_declarations = vec![];
std::mem::swap(&mut context.variable_declaration_stack.free_variable_declarations,
&mut free_variable_declarations);
let and = foliage::Formula::and(arguments);
let not = foliage::Formula::not(Box::new(and));
let scoped_formula = ScopedFormula
{
free_variable_declarations,
formula: not,
};
let integrity_constraint = universal_closure(scoped_formula);
log::debug!("translated integrity constraint: {:?}", integrity_constraint);
context.integrity_constraints.push(Box::new(integrity_constraint));
},
HeadType::Trivial => log::info!("skipping trivial rule"),
}
Ok(())
}