Refactored implementation of completion.

This commit is contained in:
Patrick Lühne 2017-04-10 16:32:12 +02:00
parent 5fd5b4c1ab
commit 5948d30e5c
Signed by: patrick
GPG Key ID: 05F3611E97A70ABF
6 changed files with 277 additions and 174 deletions

View File

@ -34,6 +34,9 @@ class VariableStack
std::vector<ast::Variable> collectFreeVariables(const ast::Formula &formula); std::vector<ast::Variable> collectFreeVariables(const ast::Formula &formula);
std::vector<ast::Variable> collectFreeVariables(const ast::Formula &formula, ast::VariableStack &variableStack); std::vector<ast::Variable> collectFreeVariables(const ast::Formula &formula, ast::VariableStack &variableStack);
bool matches(const ast::Predicate &lhs, const ast::Predicate &rhs);
void collectPredicates(const ast::Formula &formula, std::vector<const ast::Predicate *> &predicates);
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
} }

View File

@ -194,5 +194,44 @@ std::vector<ast::Variable> collectFreeVariables(const ast::Formula &formula, ast
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
struct CollectPredicatesVisitor : public RecursiveFormulaVisitor<CollectPredicatesVisitor>
{
static void accept(const ast::Predicate &predicate, const ast::Formula &, std::vector<const ast::Predicate *> &predicates)
{
const auto predicateMatches =
[&predicate](const auto *otherPredicate)
{
return matches(predicate, *otherPredicate);
};
if (std::find_if(predicates.cbegin(), predicates.cend(), predicateMatches) == predicates.cend())
predicates.emplace_back(&predicate);
}
// Ignore all other types of expressions
template<class T>
static void accept(const T &, const ast::Formula &, std::vector<const ast::Predicate *> &)
{
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
bool matches(const ast::Predicate &lhs, const ast::Predicate &rhs)
{
return (lhs.name == rhs.name && lhs.arity() == rhs.arity());
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// TODO: remove const_cast
void collectPredicates(const ast::Formula &formula, std::vector<const ast::Predicate *> &predicates)
{
auto &formulaMutable = const_cast<ast::Formula &>(formula);
formulaMutable.accept(CollectPredicatesVisitor(), formulaMutable, predicates);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} }
} }

View File

@ -2,6 +2,7 @@
#include <anthem/ASTUtils.h> #include <anthem/ASTUtils.h>
#include <anthem/ASTVisitors.h> #include <anthem/ASTVisitors.h>
#include <anthem/Utils.h>
namespace anthem namespace anthem
{ {
@ -12,163 +13,133 @@ namespace anthem
// //
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// Checks that two matching predicates (same name, same arity) have the same arguments // Copies the parameters of a predicate
void checkMatchingPredicates(const ast::Term &lhs, const ast::Term &rhs) std::vector<ast::Variable> copyParameters(const ast::Predicate &predicate)
{ {
if (!lhs.is<ast::Variable>() || !rhs.is<ast::Variable>()) std::vector<ast::Variable> parameters;
throw std::runtime_error("cannot preform completion, only variables supported in predicates currently"); parameters.reserve(predicate.arity());
if (lhs.get<ast::Variable>().name != rhs.get<ast::Variable>().name) for (const auto &parameter : predicate.arguments)
throw std::runtime_error("cannot perform completion, inconsistent predicate argument naming"); {
assert(parameter.is<ast::Variable>());
parameters.emplace_back(ast::deepCopy(parameter.get<ast::Variable>()));
}
return parameters;
} }
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
void completePredicate(const ast::Predicate &predicate, std::vector<ast::Formula> &formulas, std::size_t &formulaIndex) // Builds the conjunction within the completed formula for a given predicate
ast::Formula buildCompletedFormulaDisjunction(const ast::Predicate &predicate, const std::vector<ast::Variable> &parameters, const std::vector<ast::Formula> &formulas)
{ {
// Check that predicate is in normal form auto disjunction = ast::Formula::make<ast::Or>();
for (auto i = formulaIndex; i < formulas.size(); i++)
{
auto &formula = formulas[i];
assert(formula.is<ast::Implies>());
auto &implies = formula.get<ast::Implies>();
if (!implies.consequent.is<ast::Predicate>())
continue;
auto &otherPredicate = implies.consequent.get<ast::Predicate>();
if (predicate.arity() != otherPredicate.arity() || predicate.name != otherPredicate.name)
continue;
for (std::size_t i = 0; i < predicate.arguments.size(); i++)
checkMatchingPredicates(predicate.arguments[i], otherPredicate.arguments[i]);
}
// Copy the predicates arguments for the completed formula
std::vector<ast::Variable> variables;
variables.reserve(predicate.arguments.size());
for (const auto &argument : predicate.arguments)
{
assert(argument.is<ast::Variable>());
variables.emplace_back(ast::deepCopy(argument.get<ast::Variable>()));
}
auto or_ = ast::Formula::make<ast::Or>();
// Build the conjunction of all formulas with the predicate as consequent
for (auto i = formulaIndex; i < formulas.size();)
{
auto &formula = formulas[i];
assert(formula.is<ast::Implies>());
auto &implies = formula.get<ast::Implies>();
if (!implies.consequent.is<ast::Predicate>())
{
i++;
continue;
}
auto &otherPredicate = implies.consequent.get<ast::Predicate>();
if (predicate.arity() != otherPredicate.arity() || predicate.name != otherPredicate.name)
{
i++;
continue;
}
ast::VariableStack variableStack; ast::VariableStack variableStack;
variableStack.push(&variables); variableStack.push(&parameters);
// Build the conjunction of all formulas with the predicate as consequent
for (const auto &formula : formulas)
{
assert(formula.is<ast::Implies>());
auto &implies = formula.get<ast::Implies>();
if (!implies.consequent.is<ast::Predicate>())
continue;
auto &otherPredicate = implies.consequent.get<ast::Predicate>();
if (!ast::matches(predicate, otherPredicate))
continue;
auto variables = ast::collectFreeVariables(implies.antecedent, variableStack); auto variables = ast::collectFreeVariables(implies.antecedent, variableStack);
// TODO: avoid deep copies
if (variables.empty()) if (variables.empty())
or_.get<ast::Or>().arguments.emplace_back(std::move(implies.antecedent)); disjunction.get<ast::Or>().arguments.emplace_back(ast::deepCopy(implies.antecedent));
else else
{ {
auto exists = ast::Formula::make<ast::Exists>(std::move(variables), std::move(implies.antecedent)); auto exists = ast::Formula::make<ast::Exists>(std::move(variables), ast::deepCopy(implies.antecedent));
or_.get<ast::Or>().arguments.emplace_back(std::move(exists)); disjunction.get<ast::Or>().arguments.emplace_back(std::move(exists));
}
} }
if (i > formulaIndex) return disjunction;
formulas.erase(formulas.begin() + i);
else
i++;
}
auto biconditionalRight = std::move(or_);
// If the disjunction contains only one element, drop the enclosing disjunction
if (biconditionalRight.get<ast::Or>().arguments.size() == 1)
biconditionalRight = biconditionalRight.get<ast::Or>().arguments.front();
// If the biconditional would be of the form “F <-> true” or “F <-> false,” simplify the output
if (biconditionalRight.is<ast::Boolean>())
{
const auto &boolean = biconditionalRight.get<ast::Boolean>();
if (boolean.value == true)
formulas[formulaIndex] = ast::deepCopy(predicate);
else
formulas[formulaIndex] = ast::Formula::make<ast::Not>(ast::deepCopy(predicate));
formulaIndex++;
return;
}
// Build the biconditional within the completed formula
auto biconditional = ast::Formula::make<ast::Biconditional>(ast::deepCopy(predicate), std::move(biconditionalRight));
if (predicate.arguments.empty())
{
formulas[formulaIndex] = std::move(biconditional);
formulaIndex++;
return;
}
auto completedFormula = ast::Formula::make<ast::ForAll>(std::move(variables), std::move(biconditional));
formulas[formulaIndex] = std::move(completedFormula);
formulaIndex++;
} }
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
void completeBoolean(std::vector<ast::Formula> &formulas, std::size_t &formulaIndex) // Builds the quantified inner part of the completed formula
ast::Formula buildCompletedFormulaQuantified(ast::Predicate &&predicate, ast::Formula &&innerFormula)
{
assert(innerFormula.is<ast::Or>());
if (innerFormula.get<ast::Or>().arguments.empty())
return ast::Formula::make<ast::Not>(std::move(predicate));
if (innerFormula.get<ast::Or>().arguments.size() == 1)
innerFormula = std::move(innerFormula.get<ast::Or>().arguments.front());
if (innerFormula.is<ast::Boolean>())
{
const auto &boolean = innerFormula.get<ast::Boolean>();
if (boolean.value == true)
return std::move(predicate);
else
return ast::Formula::make<ast::Not>(std::move(predicate));
}
return ast::Formula::make<ast::Biconditional>(std::move(predicate), std::move(innerFormula));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
void completePredicate(ast::Predicate &&predicate, const std::vector<ast::Formula> &formulas, std::vector<ast::Formula> &completedFormulas)
{
auto parameters = copyParameters(predicate);
auto completedFormulaDisjunction = buildCompletedFormulaDisjunction(predicate, parameters, formulas);
auto completedFormulaQuantified = buildCompletedFormulaQuantified(std::move(predicate), std::move(completedFormulaDisjunction));
if (parameters.empty())
{
completedFormulas.emplace_back(std::move(completedFormulaQuantified));
return;
}
auto completedFormula = ast::Formula::make<ast::ForAll>(std::move(parameters), std::move(completedFormulaQuantified));
completedFormulas.emplace_back(std::move(completedFormula));
}
////////////////////////////////////////////////////////////////////////////////////////////////////
void completeIntegrityConstraint(const ast::Formula &formula, std::vector<ast::Formula> &completedFormulas)
{ {
auto &formula = formulas[formulaIndex];
assert(formula.is<ast::Implies>()); assert(formula.is<ast::Implies>());
auto &implies = formula.get<ast::Implies>(); auto &implies = formula.get<ast::Implies>();
assert(implies.consequent.is<ast::Boolean>()); assert(implies.consequent.is<ast::Boolean>());
auto &boolean = implies.consequent.get<ast::Boolean>(); assert(implies.consequent.get<ast::Boolean>().value == false);
auto variables = ast::collectFreeVariables(implies.antecedent); auto variables = ast::collectFreeVariables(implies.antecedent);
// Implications of the form “T -> true” are useless // TODO: avoid deep copies
if (boolean.value == true) auto argument = ast::Formula::make<ast::Not>(ast::deepCopy(implies.antecedent));
{
formulas.erase(formulas.begin() + formulaIndex);
return;
}
auto argument = ast::Formula::make<ast::Not>(std::move(implies.antecedent));
if (variables.empty()) if (variables.empty())
{ {
formula = std::move(argument); completedFormulas.emplace_back(std::move(argument));
formulaIndex++;
return; return;
} }
formula = ast::Formula::make<ast::ForAll>(std::move(variables), std::move(argument)); auto completedFormula = ast::Formula::make<ast::ForAll>(std::move(variables), std::move(argument));
formulaIndex++; completedFormulas.emplace_back(std::move(completedFormula));
} }
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
void complete(std::vector<ast::Formula> &formulas) void complete(std::vector<ast::Formula> &formulas)
{ {
// Check whether formulas are in normal form
for (const auto &formula : formulas) for (const auto &formula : formulas)
{ {
if (!formula.is<ast::Implies>()) if (!formula.is<ast::Implies>())
@ -180,19 +151,58 @@ void complete(std::vector<ast::Formula> &formulas)
throw std::runtime_error("cannot perform completion, only single predicates and Booleans supported as formula consequent currently"); throw std::runtime_error("cannot perform completion, only single predicates and Booleans supported as formula consequent currently");
} }
for (std::size_t i = 0; i < formulas.size();) std::vector<const ast::Predicate *> predicates;
for (const auto &formula : formulas)
ast::collectPredicates(formula, predicates);
std::sort(predicates.begin(), predicates.end(),
[](const auto *lhs, const auto *rhs)
{
const auto order = std::strcmp(lhs->name.c_str(), rhs->name.c_str());
if (order != 0)
return order < 0;
return lhs->arity() < rhs->arity();
});
std::vector<ast::Formula> completedFormulas;
// Complete predicates
for (const auto *predicate : predicates)
{
// Create the signature of the predicate
ast::Predicate signature(std::string(predicate->name));
signature.arguments.reserve(predicate->arguments.size());
for (std::size_t i = 0; i < predicate->arguments.size(); i++)
{
auto variableName = std::string(AuxiliaryHeadVariablePrefix) + std::to_string(i + 1);
signature.arguments.emplace_back(ast::Term::make<ast::Variable>(std::move(variableName), ast::Variable::Type::Reserved));
}
completePredicate(std::move(signature), formulas, completedFormulas);
}
// Complete integrity constraints
for (const auto &formula : formulas)
{ {
auto &formula = formulas[i];
auto &implies = formula.get<ast::Implies>(); auto &implies = formula.get<ast::Implies>();
if (implies.consequent.is<ast::Predicate>()) if (!implies.consequent.is<ast::Boolean>())
{ continue;
auto &predicate = implies.consequent.get<ast::Predicate>();
completePredicate(predicate, formulas, i); const auto &boolean = implies.consequent.get<ast::Boolean>();
}
else if (implies.consequent.is<ast::Boolean>()) // Rules of the form “F -> #true” are useless
completeBoolean(formulas, i); if (boolean.value == true)
continue;
completeIntegrityConstraint(formula, completedFormulas);
} }
std::swap(formulas, completedFormulas);
} }
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -21,76 +21,127 @@ TEST_CASE("[completion] Rules are completed", "[completion]")
SECTION("predicate in single rule head") SECTION("predicate in single rule head")
{ {
input << "p :- q."; input << "p :- q.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "(p <-> q)\n"); CHECK(output.str() ==
"(p <-> q)\n"
"not q\n");
} }
SECTION("predicate in multiple rule heads") SECTION("predicate in multiple rule heads")
{ {
input << "p :- q.\n" input <<
"p :- q.\n"
"p :- r.\n" "p :- r.\n"
"p :- s."; "p :- s.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "(p <-> (q or r or s))\n"); CHECK(output.str() ==
"(p <-> (q or r or s))\n"
"not q\n"
"not r\n"
"not s\n");
} }
SECTION("multiple predicates are correctly separated") SECTION("multiple predicates are correctly separated")
{ {
input << "p :- s.\n" input <<
"p :- s.\n"
"q :- t.\n" "q :- t.\n"
"p :- q.\n" "p :- q.\n"
"r :- t.\n" "r :- t.\n"
"q :- r."; "q :- r.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "(p <-> (s or q))\n(q <-> (t or r))\n(r <-> t)\n"); CHECK(output.str() ==
"(p <-> (s or q))\n"
"(q <-> (t or r))\n"
"(r <-> t)\n"
"not s\n"
"not t\n");
} }
SECTION("integrity constraints") SECTION("integrity constraints")
{ {
input << ":- q.\n" input <<
":- s(5).\n" ":- q.\n"
":- r(5).\n"
":- s(N).\n"
"#false :- t.\n" "#false :- t.\n"
"#false :- v(5)."; "#false :- u(5).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "not q\nnot s(5)\nnot t\nnot v(5)\n"); CHECK(output.str() ==
"not q\n"
"forall V1 not r(V1)\n"
"forall V1 not s(V1)\n"
"not t\n"
"forall V1 not u(V1)\n"
"not q\n"
"not r(5)\n"
"forall N not s(N)\n"
"not t\n"
"not u(5)\n");
}
SECTION("Booleans")
{
input <<
"#true :- #true.\n"
"#true :- #false.\n"
"#false :- #true.\n"
"#false :- #false.\n";
anthem::translate("input", input, context);
CHECK(output.str() ==
"not #true\n"
"not #false\n");
} }
SECTION("facts") SECTION("facts")
{ {
input << "q.\n" input <<
"q.\n"
"r.\n" "r.\n"
"t :- #true.\n" "s :- #true.\n"
"s :- #true."; "t :- #true.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "q\nr\nt\ns\n"); CHECK(output.str() ==
"q\n"
"r\n"
"s\n"
"t\n");
} }
SECTION("useless implications") SECTION("useless implications")
{ {
input << "#true :- p, q(N), t(1, 2).\n" input <<
"#true :- p, q(N), t(1, 2).\n"
"#true.\n" "#true.\n"
"h :- #false."; "v :- #false.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
// TODO: implement completion for unused predicates // TODO: implement completion for unused predicates
CHECK(output.str() == "not h\n"); CHECK(output.str() ==
"not p\n"
"forall V1 not q(V1)\n"
"forall V1, V2 not t(V1, V2)\n"
"not v\n");
} }
SECTION("example") SECTION("example")
{ {
input << "{in(1..n, 1..r)}.\n" input <<
"{in(1..n, 1..r)}.\n"
"covered(I) :- in(I, S).\n" "covered(I) :- in(I, S).\n"
":- I = 1..n, not covered(I).\n" ":- I = 1..n, not covered(I).\n"
":- in(I, S), in(J, S), in(I + J, S)."; ":- in(I, S), in(J, S), in(I + J, S).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "forall V1, V2 (in(V1, V2) <-> (V1 in 1..n and V2 in 1..r and in(V1, V2)))\n" CHECK(output.str() ==
"forall V1 (covered(V1) <-> exists I, S (V1 = I and in(I, S)))\n" "forall V1 (covered(V1) <-> exists I, S (V1 = I and in(I, S)))\n"
"forall V1, V2 (in(V1, V2) <-> (V1 in 1..n and V2 in 1..r and in(V1, V2)))\n"
"forall I not (I in 1..n and not covered(I))\n" "forall I not (I in 1..n and not covered(I))\n"
"forall I, S, J not (in(I, S) and in(J, S) and exists X5 (X5 in (I + J) and in(X5, S)))\n"); "forall I, S, J not (in(I, S) and in(J, S) and exists X5 (X5 in (I + J) and in(X5, S)))\n");
} }

View File

@ -21,7 +21,7 @@ TEST_CASE("[simplification] Rules are simplified correctly", "[simplification]")
SECTION("example 1") SECTION("example 1")
{ {
input << ":- in(I, S), in(J, S), in(I + J, S)."; input << ":- in(I, S), in(J, S), in(I + J, S).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((in(I, S) and in(J, S) and exists X5 (X5 in (I + J) and in(X5, S))) -> #false)\n"); CHECK(output.str() == "((in(I, S) and in(J, S) and exists X5 (X5 in (I + J) and in(X5, S))) -> #false)\n");
} }
@ -29,7 +29,7 @@ TEST_CASE("[simplification] Rules are simplified correctly", "[simplification]")
SECTION("example 2") SECTION("example 2")
{ {
input << "covered(I) :- in(I, S)."; input << "covered(I) :- in(I, S).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 = I and in(I, S)) -> covered(V1))\n"); CHECK(output.str() == "((V1 = I and in(I, S)) -> covered(V1))\n");
} }
@ -37,7 +37,7 @@ TEST_CASE("[simplification] Rules are simplified correctly", "[simplification]")
SECTION("example 3") SECTION("example 3")
{ {
input << ":- not covered(I), I = 1..n."; input << ":- not covered(I), I = 1..n.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((not covered(I) and I in 1..n) -> #false)\n"); CHECK(output.str() == "((not covered(I) and I in 1..n) -> #false)\n");
} }
@ -45,7 +45,7 @@ TEST_CASE("[simplification] Rules are simplified correctly", "[simplification]")
SECTION("comparisons") SECTION("comparisons")
{ {
input << ":- M > N."; input << ":- M > N.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "(M > N -> #false)\n"); CHECK(output.str() == "(M > N -> #false)\n");
} }

View File

@ -21,7 +21,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("simple example 1") SECTION("simple example 1")
{ {
input << "p(1..5)."; input << "p(1..5).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "(V1 in 1..5 -> p(V1))\n"); CHECK(output.str() == "(V1 in 1..5 -> p(V1))\n");
} }
@ -29,7 +29,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("simple example 2") SECTION("simple example 2")
{ {
input << "p(N) :- N = 1..5."; input << "p(N) :- N = 1..5.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in N and exists X1, X2 (X1 in N and X2 in 1..5 and X1 = X2)) -> p(V1))\n"); CHECK(output.str() == "((V1 in N and exists X1, X2 (X1 in N and X2 in 1..5 and X1 = X2)) -> p(V1))\n");
} }
@ -37,7 +37,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("simple example 3") SECTION("simple example 3")
{ {
input << "p(N + 1) :- q(N)."; input << "p(N + 1) :- q(N).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in (N + 1) and exists X1 (X1 in N and q(X1))) -> p(V1))\n"); CHECK(output.str() == "((V1 in (N + 1) and exists X1 (X1 in N and q(X1))) -> p(V1))\n");
} }
@ -45,7 +45,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("n-ary head") SECTION("n-ary head")
{ {
input << "p(N, 1, 2) :- N = 1..5."; input << "p(N, 1, 2) :- N = 1..5.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in N and V2 in 1 and V3 in 2 and exists X1, X2 (X1 in N and X2 in 1..5 and X1 = X2)) -> p(V1, V2, V3))\n"); CHECK(output.str() == "((V1 in N and V2 in 1 and V3 in 2 and exists X1, X2 (X1 in N and X2 in 1..5 and X1 = X2)) -> p(V1, V2, V3))\n");
} }
@ -54,7 +54,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
{ {
// TODO: check why order of disjunctive literals is inverted // TODO: check why order of disjunctive literals is inverted
input << "q(3, N); p(N, 1, 2) :- N = 1..5."; input << "q(3, N); p(N, 1, 2) :- N = 1..5.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in N and V2 in 1 and V3 in 2 and V4 in 3 and V5 in N and exists X1, X2 (X1 in N and X2 in 1..5 and X1 = X2)) -> (p(V1, V2, V3) or q(V4, V5)))\n"); CHECK(output.str() == "((V1 in N and V2 in 1 and V3 in 2 and V4 in 3 and V5 in N and exists X1, X2 (X1 in N and X2 in 1..5 and X1 = X2)) -> (p(V1, V2, V3) or q(V4, V5)))\n");
} }
@ -63,7 +63,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
{ {
// TODO: check why order of disjunctive literals is inverted // TODO: check why order of disjunctive literals is inverted
input << "q(3, N), p(N, 1, 2) :- N = 1..5."; input << "q(3, N), p(N, 1, 2) :- N = 1..5.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in N and V2 in 1 and V3 in 2 and V4 in 3 and V5 in N and exists X1, X2 (X1 in N and X2 in 1..5 and X1 = X2)) -> (p(V1, V2, V3) or q(V4, V5)))\n"); CHECK(output.str() == "((V1 in N and V2 in 1 and V3 in 2 and V4 in 3 and V5 in N and exists X1, X2 (X1 in N and X2 in 1..5 and X1 = X2)) -> (p(V1, V2, V3) or q(V4, V5)))\n");
} }
@ -71,7 +71,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("escaping conflicting variable names") SECTION("escaping conflicting variable names")
{ {
input << "p(X1, V1, A1) :- q(X1), q(V1), q(A1)."; input << "p(X1, V1, A1) :- q(X1), q(V1), q(A1).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in _X1 and V2 in _V1 and V3 in _A1 and exists X1 (X1 in _X1 and q(X1)) and exists X2 (X2 in _V1 and q(X2)) and exists X3 (X3 in _A1 and q(X3))) -> p(V1, V2, V3))\n"); CHECK(output.str() == "((V1 in _X1 and V2 in _V1 and V3 in _A1 and exists X1 (X1 in _X1 and q(X1)) and exists X2 (X2 in _V1 and q(X2)) and exists X3 (X3 in _A1 and q(X3))) -> p(V1, V2, V3))\n");
} }
@ -79,7 +79,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("fact") SECTION("fact")
{ {
input << "p(42)."; input << "p(42).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "(V1 in 42 -> p(V1))\n"); CHECK(output.str() == "(V1 in 42 -> p(V1))\n");
} }
@ -87,7 +87,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("0-ary fact") SECTION("0-ary fact")
{ {
input << "p."; input << "p.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "(#true -> p)\n"); CHECK(output.str() == "(#true -> p)\n");
} }
@ -95,7 +95,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("function") SECTION("function")
{ {
input << ":- not p(I), I = 1..n."; input << ":- not p(I), I = 1..n.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((exists X1 (X1 in I and not p(X1)) and exists X2, X3 (X2 in I and X3 in 1..n and X2 = X3)) -> #false)\n"); CHECK(output.str() == "((exists X1 (X1 in I and not p(X1)) and exists X2, X3 (X2 in I and X3 in 1..n and X2 = X3)) -> #false)\n");
} }
@ -103,7 +103,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("disjunctive fact (no arguments)") SECTION("disjunctive fact (no arguments)")
{ {
input << "q; p."; input << "q; p.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "(#true -> (p or q))\n"); CHECK(output.str() == "(#true -> (p or q))\n");
} }
@ -111,7 +111,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("disjunctive fact (arguments)") SECTION("disjunctive fact (arguments)")
{ {
input << "q; p(42)."; input << "q; p(42).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "(V1 in 42 -> (p(V1) or q))\n"); CHECK(output.str() == "(V1 in 42 -> (p(V1) or q))\n");
} }
@ -119,7 +119,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("integrity constraint (no arguments)") SECTION("integrity constraint (no arguments)")
{ {
input << ":- p, q."; input << ":- p, q.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((p and q) -> #false)\n"); CHECK(output.str() == "((p and q) -> #false)\n");
} }
@ -127,7 +127,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("contradiction") SECTION("contradiction")
{ {
input << ":-."; input << ":-.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "(#true -> #false)\n"); CHECK(output.str() == "(#true -> #false)\n");
} }
@ -135,7 +135,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("integrity constraint (arguments)") SECTION("integrity constraint (arguments)")
{ {
input << ":- p(42), q."; input << ":- p(42), q.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((exists X1 (X1 in 42 and p(X1)) and q) -> #false)\n"); CHECK(output.str() == "((exists X1 (X1 in 42 and p(X1)) and q) -> #false)\n");
} }
@ -143,7 +143,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("inf/sup") SECTION("inf/sup")
{ {
input << "p(X, #inf) :- q(X, #sup)."; input << "p(X, #inf) :- q(X, #sup).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in X and V2 in #inf and exists X1, X2 (X1 in X and X2 in #sup and q(X1, X2))) -> p(V1, V2))\n"); CHECK(output.str() == "((V1 in X and V2 in #inf and exists X1, X2 (X1 in X and X2 in #sup and q(X1, X2))) -> p(V1, V2))\n");
} }
@ -151,7 +151,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("strings") SECTION("strings")
{ {
input << "p(X, \"foo\") :- q(X, \"bar\")."; input << "p(X, \"foo\") :- q(X, \"bar\").";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in X and V2 in \"foo\" and exists X1, X2 (X1 in X and X2 in \"bar\" and q(X1, X2))) -> p(V1, V2))\n"); CHECK(output.str() == "((V1 in X and V2 in \"foo\" and exists X1, X2 (X1 in X and X2 in \"bar\" and q(X1, X2))) -> p(V1, V2))\n");
} }
@ -159,7 +159,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("tuples") SECTION("tuples")
{ {
input << "p(X, (1, 2, 3)) :- q(X, (4, 5))."; input << "p(X, (1, 2, 3)) :- q(X, (4, 5)).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in X and V2 in (1, 2, 3) and exists X1, X2 (X1 in X and X2 in (4, 5) and q(X1, X2))) -> p(V1, V2))\n"); CHECK(output.str() == "((V1 in X and V2 in (1, 2, 3) and exists X1, X2 (X1 in X and X2 in (4, 5) and q(X1, X2))) -> p(V1, V2))\n");
} }
@ -167,7 +167,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("1-ary tuples") SECTION("1-ary tuples")
{ {
input << "p(X, (1,)) :- q(X, (2,))."; input << "p(X, (1,)) :- q(X, (2,)).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in X and V2 in (1,) and exists X1, X2 (X1 in X and X2 in (2,) and q(X1, X2))) -> p(V1, V2))\n"); CHECK(output.str() == "((V1 in X and V2 in (1,) and exists X1, X2 (X1 in X and X2 in (2,) and q(X1, X2))) -> p(V1, V2))\n");
} }
@ -175,7 +175,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("intervals") SECTION("intervals")
{ {
input << "p(X, 1..10) :- q(X, 6..12)."; input << "p(X, 1..10) :- q(X, 6..12).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in X and V2 in 1..10 and exists X1, X2 (X1 in X and X2 in 6..12 and q(X1, X2))) -> p(V1, V2))\n"); CHECK(output.str() == "((V1 in X and V2 in 1..10 and exists X1, X2 (X1 in X and X2 in 6..12 and q(X1, X2))) -> p(V1, V2))\n");
} }
@ -183,7 +183,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("comparisons") SECTION("comparisons")
{ {
input << "p(M, N, O, P) :- M < N, P != O."; input << "p(M, N, O, P) :- M < N, P != O.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in M and V2 in N and V3 in O and V4 in P and exists X1, X2 (X1 in M and X2 in N and X1 < X2) and exists X3, X4 (X3 in P and X4 in O and X3 != X4)) -> p(V1, V2, V3, V4))\n"); CHECK(output.str() == "((V1 in M and V2 in N and V3 in O and V4 in P and exists X1, X2 (X1 in M and X2 in N and X1 < X2) and exists X3, X4 (X3 in P and X4 in O and X3 != X4)) -> p(V1, V2, V3, V4))\n");
} }
@ -191,7 +191,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("single negation") SECTION("single negation")
{ {
input << "not p(X, 1) :- not q(X, 2)."; input << "not p(X, 1) :- not q(X, 2).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in X and V2 in 1 and exists X1, X2 (X1 in X and X2 in 2 and not q(X1, X2))) -> not p(V1, V2))\n"); CHECK(output.str() == "((V1 in X and V2 in 1 and exists X1, X2 (X1 in X and X2 in 2 and not q(X1, X2))) -> not p(V1, V2))\n");
} }
@ -200,7 +200,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
{ {
// TODO: check why order of disjunctive literals is inverted // TODO: check why order of disjunctive literals is inverted
input << "f; q(A1, A2); p(A3, r(A4)); g(g(A5)) :- g(A3), f, q(A4, A1), p(A2, A5)."; input << "f; q(A1, A2); p(A3, r(A4)); g(g(A5)) :- g(A3), f, q(A4, A1), p(A2, A5).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in _A1 and V2 in _A2 and V3 in _A3 and V4 in r(_A4) and V5 in g(_A5)" CHECK(output.str() == "((V1 in _A1 and V2 in _A2 and V3 in _A3 and V4 in r(_A4) and V5 in g(_A5)"
" and exists X1 (X1 in _A3 and g(X1)) and f and exists X2, X3 (X2 in _A4 and X3 in _A1 and q(X2, X3)) and exists X4, X5 (X4 in _A2 and X5 in _A5 and p(X4, X5)))" " and exists X1 (X1 in _A3 and g(X1)) and f and exists X2, X3 (X2 in _A4 and X3 in _A1 and q(X2, X3)) and exists X4, X5 (X4 in _A2 and X5 in _A5 and p(X4, X5)))"
@ -210,7 +210,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("nested functions") SECTION("nested functions")
{ {
input << "p(q(s(t(X1))), u(X2)) :- u(v(w(X2)), z(X1))."; input << "p(q(s(t(X1))), u(X2)) :- u(v(w(X2)), z(X1)).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in q(s(t(_X1))) and V2 in u(_X2) and exists X1, X2 (X1 in v(w(_X2)) and X2 in z(_X1) and u(X1, X2))) -> p(V1, V2))\n"); CHECK(output.str() == "((V1 in q(s(t(_X1))) and V2 in u(_X2) and exists X1, X2 (X1 in v(w(_X2)) and X2 in z(_X1) and u(X1, X2))) -> p(V1, V2))\n");
} }
@ -218,7 +218,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("choice rule (simple)") SECTION("choice rule (simple)")
{ {
input << "{p}."; input << "{p}.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "(p -> p)\n"); CHECK(output.str() == "(p -> p)\n");
} }
@ -226,7 +226,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("choice rule (two elements)") SECTION("choice rule (two elements)")
{ {
input << "{p; q}."; input << "{p; q}.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "(p -> p)\n(q -> q)\n"); CHECK(output.str() == "(p -> p)\n(q -> q)\n");
} }
@ -234,7 +234,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("choice rule (n-ary elements)") SECTION("choice rule (n-ary elements)")
{ {
input << "{p(1..3, N); q(2..4)}."; input << "{p(1..3, N); q(2..4)}.";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in 1..3 and V2 in N and V3 in 2..4 and p(V1, V2)) -> p(V1, V2))\n((V1 in 1..3 and V2 in N and V3 in 2..4 and q(V3)) -> q(V3))\n"); CHECK(output.str() == "((V1 in 1..3 and V2 in N and V3 in 2..4 and p(V1, V2)) -> p(V1, V2))\n((V1 in 1..3 and V2 in N and V3 in 2..4 and q(V3)) -> q(V3))\n");
} }
@ -242,7 +242,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("choice rule with body") SECTION("choice rule with body")
{ {
input << "{p(M, N); q(P)} :- s(M, N, P)."; input << "{p(M, N); q(P)} :- s(M, N, P).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in M and V2 in N and V3 in P and exists X1, X2, X3 (X1 in M and X2 in N and X3 in P and s(X1, X2, X3)) and p(V1, V2)) -> p(V1, V2))\n((V1 in M and V2 in N and V3 in P and exists X1, X2, X3 (X1 in M and X2 in N and X3 in P and s(X1, X2, X3)) and q(V3)) -> q(V3))\n"); CHECK(output.str() == "((V1 in M and V2 in N and V3 in P and exists X1, X2, X3 (X1 in M and X2 in N and X3 in P and s(X1, X2, X3)) and p(V1, V2)) -> p(V1, V2))\n((V1 in M and V2 in N and V3 in P and exists X1, X2, X3 (X1 in M and X2 in N and X3 in P and s(X1, X2, X3)) and q(V3)) -> q(V3))\n");
} }
@ -250,7 +250,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("choice rule with negation") SECTION("choice rule with negation")
{ {
input << "{not p(X, 1)} :- not q(X, 2)."; input << "{not p(X, 1)} :- not q(X, 2).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in X and V2 in 1 and exists X1, X2 (X1 in X and X2 in 2 and not q(X1, X2)) and not p(V1, V2)) -> not p(V1, V2))\n"); CHECK(output.str() == "((V1 in X and V2 in 1 and exists X1, X2 (X1 in X and X2 in 2 and not q(X1, X2)) and not p(V1, V2)) -> not p(V1, V2))\n");
} }
@ -258,7 +258,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("choice rule with negation (two elements)") SECTION("choice rule with negation (two elements)")
{ {
input << "{not p(X, 1); not s} :- not q(X, 2)."; input << "{not p(X, 1); not s} :- not q(X, 2).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in X and V2 in 1 and exists X1, X2 (X1 in X and X2 in 2 and not q(X1, X2)) and not p(V1, V2)) -> not p(V1, V2))\n((V1 in X and V2 in 1 and exists X1, X2 (X1 in X and X2 in 2 and not q(X1, X2)) and not s) -> not s)\n"); CHECK(output.str() == "((V1 in X and V2 in 1 and exists X1, X2 (X1 in X and X2 in 2 and not q(X1, X2)) and not p(V1, V2)) -> not p(V1, V2))\n((V1 in X and V2 in 1 and exists X1, X2 (X1 in X and X2 in 2 and not q(X1, X2)) and not s) -> not s)\n");
} }
@ -266,7 +266,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
SECTION("anonymous variables") SECTION("anonymous variables")
{ {
input << "p(_, _) :- q(_, _)."; input << "p(_, _) :- q(_, _).";
REQUIRE_NOTHROW(anthem::translate("input", input, context)); anthem::translate("input", input, context);
CHECK(output.str() == "((V1 in A1 and V2 in A2 and exists X1, X2 (X1 in A3 and X2 in A4 and q(X1, X2))) -> p(V1, V2))\n"); CHECK(output.str() == "((V1 in A1 and V2 in A2 and exists X1, X2 (X1 in A3 and X2 in A4 and q(X1, X2))) -> p(V1, V2))\n");
} }