2017-06-27 20:29:19 +02:00
|
|
|
# -*- coding: utf-8 -*-
|
2017-06-30 09:04:24 +02:00
|
|
|
import string
|
|
|
|
|
2017-07-08 17:46:07 +02:00
|
|
|
import h5py
|
2017-06-29 09:19:36 +02:00
|
|
|
import numpy as np
|
2017-06-30 09:04:24 +02:00
|
|
|
import pandas as pd
|
2017-07-08 15:04:58 +02:00
|
|
|
from keras.utils import np_utils
|
2017-06-29 09:19:36 +02:00
|
|
|
from tqdm import tqdm
|
2017-06-27 20:29:19 +02:00
|
|
|
|
2017-07-04 09:18:50 +02:00
|
|
|
chars = dict((char, idx + 1) for (idx, char) in
|
|
|
|
enumerate(string.ascii_lowercase + string.punctuation + string.digits))
|
|
|
|
|
2017-06-27 20:29:19 +02:00
|
|
|
|
2017-06-30 09:04:24 +02:00
|
|
|
def get_character_dict():
|
2017-07-04 09:18:50 +02:00
|
|
|
return chars
|
|
|
|
|
|
|
|
|
|
|
|
def encode_char(c):
|
|
|
|
if c in chars:
|
|
|
|
return chars[c]
|
|
|
|
else:
|
|
|
|
return 0
|
|
|
|
|
|
|
|
|
|
|
|
encode_char = np.vectorize(encode_char)
|
2017-06-30 09:04:24 +02:00
|
|
|
|
|
|
|
|
|
|
|
def get_user_chunks(dataFrame, windowSize=10, overlapping=False,
|
|
|
|
maxLengthInSeconds=300):
|
|
|
|
maxMilliSeconds = maxLengthInSeconds * 1000
|
|
|
|
outDomainLists = []
|
|
|
|
outDFFrames = []
|
2017-07-06 16:27:47 +02:00
|
|
|
if not overlapping:
|
2017-06-30 09:04:24 +02:00
|
|
|
numBlocks = int(np.ceil(float(len(dataFrame)) / float(windowSize)))
|
|
|
|
userIDs = np.arange(len(dataFrame))
|
|
|
|
for blockID in np.arange(numBlocks):
|
|
|
|
curIDs = userIDs[(blockID * windowSize):((blockID + 1) * windowSize)]
|
|
|
|
# print(curIDs)
|
|
|
|
useData = dataFrame.iloc[curIDs]
|
|
|
|
curDomains = useData['domain']
|
|
|
|
if maxLengthInSeconds != -1:
|
|
|
|
curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
|
|
|
|
underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
|
|
|
|
if len(underTimeOutIDs) != len(curIDs):
|
|
|
|
curIDs = curIDs[underTimeOutIDs]
|
|
|
|
useData = dataFrame.iloc[curIDs]
|
|
|
|
curDomains = useData['domain']
|
|
|
|
outDomainLists.append(list(curDomains))
|
|
|
|
outDFFrames.append(useData)
|
|
|
|
else:
|
|
|
|
numBlocks = len(dataFrame) + 1 - windowSize
|
|
|
|
userIDs = np.arange(len(dataFrame))
|
|
|
|
for blockID in np.arange(numBlocks):
|
|
|
|
curIDs = userIDs[blockID:blockID + windowSize]
|
|
|
|
useData = dataFrame.iloc[curIDs]
|
|
|
|
curDomains = useData['domain']
|
|
|
|
if maxLengthInSeconds != -1:
|
|
|
|
curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
|
|
|
|
underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
|
|
|
|
if len(underTimeOutIDs) != len(curIDs):
|
|
|
|
curIDs = curIDs[underTimeOutIDs]
|
|
|
|
useData = dataFrame.iloc[curIDs]
|
|
|
|
curDomains = useData['domain']
|
|
|
|
outDomainLists.append(list(curDomains))
|
|
|
|
outDFFrames.append(useData)
|
2017-07-04 09:18:50 +02:00
|
|
|
if len(outDomainLists[-1]) != windowSize:
|
|
|
|
outDomainLists.pop(-1)
|
|
|
|
outDFFrames.pop(-1)
|
2017-06-30 09:04:24 +02:00
|
|
|
return (outDomainLists, outDFFrames)
|
|
|
|
|
|
|
|
|
2017-06-30 10:42:21 +02:00
|
|
|
def get_domain_features(domain, vocab, max_length=40):
|
2017-07-04 09:18:50 +02:00
|
|
|
encoding = np.zeros((max_length,))
|
2017-06-30 10:42:21 +02:00
|
|
|
for j in range(np.min([len(domain), max_length])):
|
2017-07-06 16:27:47 +02:00
|
|
|
char = domain[-j]
|
|
|
|
if char in vocab:
|
|
|
|
encoding[j] = vocab[char]
|
2017-07-04 09:18:50 +02:00
|
|
|
return encoding
|
2017-06-30 09:04:24 +02:00
|
|
|
|
|
|
|
|
2017-06-30 10:42:21 +02:00
|
|
|
def get_flow_features(flow):
|
2017-06-30 17:19:04 +02:00
|
|
|
keys = ['duration', 'bytes_down', 'bytes_up']
|
|
|
|
features = np.zeros([len(keys), ])
|
|
|
|
for i, key in enumerate(keys):
|
|
|
|
# TODO: does it still works after exceptions occur -- default: zero!
|
|
|
|
# i wonder whether something brokes
|
|
|
|
# if there are exceptions regarding to inconsistent feature length
|
2017-06-30 09:04:24 +02:00
|
|
|
try:
|
2017-06-30 17:19:04 +02:00
|
|
|
features[i] = np.log1p(flow[key]).astype(float)
|
2017-06-30 09:04:24 +02:00
|
|
|
except:
|
|
|
|
pass
|
2017-06-30 17:19:04 +02:00
|
|
|
return features
|
2017-06-30 09:04:24 +02:00
|
|
|
|
|
|
|
|
2017-07-04 09:18:50 +02:00
|
|
|
def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10, use_cisco_features=False):
|
|
|
|
domains = []
|
|
|
|
features = []
|
2017-06-30 09:04:24 +02:00
|
|
|
print("get chunks from user data frames")
|
2017-07-08 17:46:07 +02:00
|
|
|
for i, user_flow in tqdm(list(enumerate(get_flow_per_user(user_flow_df)))):
|
2017-07-04 09:18:50 +02:00
|
|
|
(domain_windows, feature_windows) = get_user_chunks(user_flow,
|
|
|
|
windowSize=window_size,
|
2017-07-05 19:16:03 +02:00
|
|
|
overlapping=False,
|
2017-07-04 09:18:50 +02:00
|
|
|
maxLengthInSeconds=-1)
|
|
|
|
domains += domain_windows
|
|
|
|
features += feature_windows
|
2017-06-30 09:04:24 +02:00
|
|
|
|
|
|
|
print("create training dataset")
|
2017-07-08 17:46:07 +02:00
|
|
|
domain_tr, flow_tr, hits_tr, names_tr, server_tr, trusted_hits_tr = create_dataset_from_lists(domains=domains,
|
|
|
|
flows=features,
|
|
|
|
vocab=char_dict,
|
|
|
|
max_len=max_len,
|
|
|
|
window_size=window_size)
|
2017-06-30 09:04:24 +02:00
|
|
|
|
2017-07-05 21:19:19 +02:00
|
|
|
# make client labels discrete with 4 different values
|
2017-07-06 16:27:47 +02:00
|
|
|
hits_tr = np.apply_along_axis(lambda x: discretize_label(x, 3), 0, np.atleast_2d(hits_tr))
|
2017-07-05 21:19:19 +02:00
|
|
|
# select only 1.0 and 0.0 from training data
|
2017-07-06 16:27:47 +02:00
|
|
|
pos_idx = np.where(np.logical_or(hits_tr == 1.0, trusted_hits_tr >= 1.0))[0]
|
|
|
|
neg_idx = np.where(hits_tr == 0.0)[0]
|
2017-07-05 21:19:19 +02:00
|
|
|
idx = np.concatenate((pos_idx, neg_idx))
|
|
|
|
# choose selected sample to train on
|
|
|
|
domain_tr = domain_tr[idx]
|
|
|
|
flow_tr = flow_tr[idx]
|
2017-07-06 16:27:47 +02:00
|
|
|
client_tr = np.zeros_like(idx, float)
|
|
|
|
client_tr[:pos_idx.shape[-1]] = 1.0
|
|
|
|
server_tr = server_tr[idx]
|
2017-07-05 21:19:19 +02:00
|
|
|
|
2017-07-08 15:04:58 +02:00
|
|
|
client_tr = np_utils.to_categorical(client_tr, 2)
|
|
|
|
server_tr = np_utils.to_categorical(server_tr, 2)
|
|
|
|
|
2017-07-06 16:27:47 +02:00
|
|
|
return domain_tr, flow_tr, client_tr, server_tr
|
2017-07-05 21:19:19 +02:00
|
|
|
|
2017-06-30 09:04:24 +02:00
|
|
|
|
2017-07-09 23:58:08 +02:00
|
|
|
def store_h5dataset(path, domain_tr, flow_tr, client_tr, server_tr):
|
|
|
|
f = h5py.File(path, "w")
|
2017-07-08 17:46:07 +02:00
|
|
|
domain_tr = domain_tr.astype(np.int8)
|
|
|
|
f.create_dataset("domain", data=domain_tr)
|
|
|
|
f.create_dataset("flow", data=flow_tr)
|
|
|
|
server_tr = server_tr.astype(np.bool)
|
|
|
|
client_tr = client_tr.astype(np.bool)
|
|
|
|
f.create_dataset("client", data=client_tr)
|
|
|
|
f.create_dataset("server", data=server_tr)
|
|
|
|
f.close()
|
|
|
|
|
|
|
|
|
2017-07-09 23:58:08 +02:00
|
|
|
def load_h5dataset(path):
|
|
|
|
data = h5py.File(path, "r")
|
|
|
|
return data["domain"], data["flow"], data["client"], data["server"]
|
|
|
|
|
|
|
|
|
2017-07-08 17:46:07 +02:00
|
|
|
def create_dataset_from_lists(domains, flows, vocab, max_len, window_size=10):
|
2017-07-04 09:18:50 +02:00
|
|
|
"""
|
|
|
|
combines domain and feature windows to sequential training data
|
|
|
|
:param domains: list of domain windows
|
2017-07-08 17:46:07 +02:00
|
|
|
:param flows: list of flow feature windows
|
2017-07-04 09:18:50 +02:00
|
|
|
:param vocab:
|
|
|
|
:param max_len:
|
|
|
|
:param window_size: size of the flow window
|
|
|
|
:return:
|
|
|
|
"""
|
2017-07-08 17:46:07 +02:00
|
|
|
numFeatures = 3
|
2017-07-04 09:18:50 +02:00
|
|
|
sample_size = len(domains)
|
2017-06-30 09:04:24 +02:00
|
|
|
hits = []
|
2017-06-30 17:19:04 +02:00
|
|
|
names = []
|
|
|
|
servers = []
|
|
|
|
trusted_hits = []
|
2017-07-04 09:18:50 +02:00
|
|
|
|
|
|
|
domain_features = np.zeros((sample_size, window_size, max_len))
|
|
|
|
flow_features = np.zeros((sample_size, window_size, numFeatures))
|
|
|
|
|
|
|
|
for i in tqdm(np.arange(sample_size), miniters=10):
|
|
|
|
for j in range(window_size):
|
2017-07-08 17:46:07 +02:00
|
|
|
domain_features[i, j, :] = get_domain_features(domains[i][j], vocab, max_len)
|
|
|
|
flow_features[i, j, :] = get_flow_features(flows[i].iloc[j])
|
|
|
|
|
|
|
|
hits.append(np.max(flows[i]['virusTotalHits']))
|
|
|
|
names.append(np.unique(flows[i]['user_hash']))
|
|
|
|
servers.append(np.max(flows[i]['serverLabel']))
|
|
|
|
trusted_hits.append(np.max(flows[i]['trustedHits']))
|
2017-07-05 18:37:29 +02:00
|
|
|
return (domain_features, flow_features,
|
|
|
|
np.array(hits), np.array(names), np.array(servers), np.array(trusted_hits))
|
2017-06-30 17:19:04 +02:00
|
|
|
|
|
|
|
|
|
|
|
def discretize_label(values, threshold):
|
|
|
|
maxVal = np.max(values)
|
|
|
|
if maxVal >= threshold:
|
|
|
|
return 1.0
|
|
|
|
elif maxVal == -1:
|
|
|
|
return -1.0
|
|
|
|
elif 0 < maxVal < threshold:
|
|
|
|
return -2.0
|
|
|
|
else:
|
|
|
|
return 0.0
|
2017-06-30 09:04:24 +02:00
|
|
|
|
|
|
|
|
2017-07-05 21:19:19 +02:00
|
|
|
def get_user_flow_data(csv_file):
|
2017-07-08 17:46:07 +02:00
|
|
|
types = {
|
|
|
|
"duration": int,
|
|
|
|
"bytes_down": int,
|
|
|
|
"bytes_up": int,
|
|
|
|
"domain": object,
|
|
|
|
"timeStamp": float,
|
|
|
|
"server_ip": object,
|
|
|
|
"user_hash": float,
|
|
|
|
"virusTotalHits": int,
|
|
|
|
"serverLabel": int,
|
|
|
|
"trustedHits": int
|
|
|
|
}
|
2017-07-05 21:19:19 +02:00
|
|
|
df = pd.read_csv(csv_file)
|
2017-07-08 17:46:07 +02:00
|
|
|
df = df[list(types.keys())]
|
2017-06-30 10:42:21 +02:00
|
|
|
df.set_index(keys=['user_hash'], drop=False, inplace=True)
|
|
|
|
return df
|
2017-06-30 09:04:24 +02:00
|
|
|
|
|
|
|
|
|
|
|
def get_flow_per_user(df):
|
|
|
|
users = df['user_hash'].unique().tolist()
|
|
|
|
for user in users:
|
|
|
|
yield df.loc[df.user_hash == user]
|