ma_cisco_malware/dataset.py

202 lines
7.2 KiB
Python
Raw Normal View History

2017-06-27 20:29:19 +02:00
# -*- coding: utf-8 -*-
import logging
import string
2017-07-08 17:46:07 +02:00
import h5py
2017-06-29 09:19:36 +02:00
import numpy as np
import pandas as pd
2017-07-08 15:04:58 +02:00
from keras.utils import np_utils
2017-06-29 09:19:36 +02:00
from tqdm import tqdm
2017-06-27 20:29:19 +02:00
logger = logging.getLogger('logger')
chars = dict((char, idx + 1) for (idx, char) in
enumerate(string.ascii_lowercase + string.punctuation + string.digits))
2017-06-27 20:29:19 +02:00
def get_character_dict():
return chars
def encode_char(c):
if c in chars:
return chars[c]
else:
return 0
encode_char = np.vectorize(encode_char)
# TODO: refactor
def get_user_chunks(dataFrame, windowSize=10, overlapping=False,
maxLengthInSeconds=300):
maxMilliSeconds = maxLengthInSeconds * 1000
outDomainLists = []
outDFFrames = []
if not overlapping:
numBlocks = int(np.ceil(float(len(dataFrame)) / float(windowSize)))
userIDs = np.arange(len(dataFrame))
for blockID in np.arange(numBlocks):
curIDs = userIDs[(blockID * windowSize):((blockID + 1) * windowSize)]
# logger.info(curIDs)
useData = dataFrame.iloc[curIDs]
curDomains = useData['domain']
if maxLengthInSeconds != -1:
curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
if len(underTimeOutIDs) != len(curIDs):
curIDs = curIDs[underTimeOutIDs]
useData = dataFrame.iloc[curIDs]
curDomains = useData['domain']
outDomainLists.append(list(curDomains))
outDFFrames.append(useData)
else:
numBlocks = len(dataFrame) + 1 - windowSize
userIDs = np.arange(len(dataFrame))
for blockID in np.arange(numBlocks):
curIDs = userIDs[blockID:blockID + windowSize]
useData = dataFrame.iloc[curIDs]
curDomains = useData['domain']
if maxLengthInSeconds != -1:
curMinMilliSeconds = np.min(useData['timeStamp']) + maxMilliSeconds
underTimeOutIDs = np.where(np.array(useData['timeStamp']) <= curMinMilliSeconds)
if len(underTimeOutIDs) != len(curIDs):
curIDs = curIDs[underTimeOutIDs]
useData = dataFrame.iloc[curIDs]
curDomains = useData['domain']
outDomainLists.append(list(curDomains))
outDFFrames.append(useData)
if len(outDomainLists[-1]) != windowSize:
outDomainLists.pop(-1)
outDFFrames.pop(-1)
return outDomainLists, outDFFrames
def get_domain_features(domain, vocab: dict, max_length=40):
encoding = np.zeros((max_length,))
for j in range(min(len(domain), max_length)):
char = domain[-j] # TODO: why -j -> order reversed for domain url?
encoding[j] = vocab.get(char, 0)
return encoding
def get_all_flow_features(features):
flows = np.stack(list(
map(lambda f: f[["duration", "bytes_up", "bytes_down"]], features))
)
return np.log1p(flows)
def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10):
domains = []
features = []
logger.info("get chunks from user data frames")
for i, user_flow in tqdm(list(enumerate(get_flow_per_user(user_flow_df)))):
(domain_windows, feature_windows) = get_user_chunks(user_flow,
windowSize=window_size,
2017-07-05 19:16:03 +02:00
overlapping=False,
maxLengthInSeconds=-1)
domains += domain_windows
features += feature_windows
logger.info("create training dataset")
domain_tr, flow_tr, hits_tr, _, server_tr, trusted_hits_tr = create_dataset_from_lists(domains=domains,
flows=features,
vocab=char_dict,
max_len=max_len,
window_size=window_size)
2017-07-05 21:19:19 +02:00
# make client labels discrete with 4 different values
hits_tr = np.apply_along_axis(lambda x: discretize_label(x, 3), 0, np.atleast_2d(hits_tr))
2017-07-05 21:19:19 +02:00
# select only 1.0 and 0.0 from training data
pos_idx = np.where(np.logical_or(hits_tr == 1.0, trusted_hits_tr >= 1.0))[0]
neg_idx = np.where(hits_tr == 0.0)[0]
2017-07-05 21:19:19 +02:00
idx = np.concatenate((pos_idx, neg_idx))
# choose selected sample to train on
domain_tr = domain_tr[idx]
flow_tr = flow_tr[idx]
client_tr = np.zeros_like(idx, float)
client_tr[:pos_idx.shape[-1]] = 1.0
server_tr = server_tr[idx]
2017-07-05 21:19:19 +02:00
2017-07-08 15:04:58 +02:00
client_tr = np_utils.to_categorical(client_tr, 2)
server_tr = np_utils.to_categorical(server_tr, 2)
return domain_tr, flow_tr, client_tr, server_tr
2017-07-05 21:19:19 +02:00
2017-07-09 23:58:08 +02:00
def store_h5dataset(path, domain_tr, flow_tr, client_tr, server_tr):
f = h5py.File(path, "w")
2017-07-08 17:46:07 +02:00
domain_tr = domain_tr.astype(np.int8)
f.create_dataset("domain", data=domain_tr)
f.create_dataset("flow", data=flow_tr)
server_tr = server_tr.astype(np.bool)
client_tr = client_tr.astype(np.bool)
f.create_dataset("client", data=client_tr)
f.create_dataset("server", data=server_tr)
f.close()
2017-07-09 23:58:08 +02:00
def load_h5dataset(path):
data = h5py.File(path, "r")
return data["domain"], data["flow"], data["client"], data["server"]
2017-07-08 17:46:07 +02:00
def create_dataset_from_lists(domains, flows, vocab, max_len, window_size=10):
"""
combines domain and feature windows to sequential training data
:param domains: list of domain windows
2017-07-08 17:46:07 +02:00
:param flows: list of flow feature windows
:param vocab:
:param max_len:
:param window_size: size of the flow window
:return:
"""
domain_features = np.array([[get_domain_features(d, vocab, max_len) for d in x] for x in domains])
flow_features = get_all_flow_features(flows)
hits = np.max(np.stack(map(lambda f: f.virusTotalHits, flows)), axis=1)
names = np.unique(np.stack(map(lambda f: f.user_hash, flows)), axis=1)
servers = np.max(np.stack(map(lambda f: f.serverLabel, flows)), axis=1)
trusted_hits = np.max(np.stack(map(lambda f: f.trustedHits, flows)), axis=1)
return (domain_features, flow_features,
hits, names, servers, trusted_hits)
def discretize_label(values, threshold):
maxVal = np.max(values)
if maxVal >= threshold:
return 1.0
elif maxVal == -1:
return -1.0
elif 0 < maxVal < threshold:
return -2.0
else:
return 0.0
2017-07-05 21:19:19 +02:00
def get_user_flow_data(csv_file):
2017-07-08 17:46:07 +02:00
types = {
"duration": int,
"bytes_down": int,
"bytes_up": int,
"domain": object,
"timeStamp": float,
"server_ip": object,
"user_hash": float,
"virusTotalHits": int,
"serverLabel": int,
"trustedHits": int
}
2017-07-05 21:19:19 +02:00
df = pd.read_csv(csv_file)
2017-07-08 17:46:07 +02:00
df = df[list(types.keys())]
2017-06-30 10:42:21 +02:00
df.set_index(keys=['user_hash'], drop=False, inplace=True)
return df
def get_flow_per_user(df):
users = df['user_hash'].unique().tolist()
for user in users:
yield df.loc[df.user_hash == user]