add regularization to small networks, fix model name in args, fix visualizations

This commit is contained in:
René Knaebel 2017-09-10 18:06:40 +02:00
parent 6fef2b8b84
commit 1cf62423e1
6 changed files with 72 additions and 28 deletions

View File

@ -102,6 +102,7 @@ parser.add_argument("--new_model", action="store_true", dest="new_model")
def get_model_args(args):
return [{
"model_path": model_path,
"model_name": os.path.split(os.path.normpath(model_path))[1],
"embedding_model": os.path.join(model_path, "embd.h5"),
"clf_model": os.path.join(model_path, "clf.h5"),
"train_log": os.path.join(model_path, "train.log.csv"),

View File

@ -5,19 +5,20 @@ DATADIR=$2
python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/both_small_final --test ${DATADIR}/futureData.csv --model_output both
python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/both_small_inter --test ${DATADIR}/futureData.csv --model_output both
python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/both_small_staggered --test ${DATADIR}/futureData.csv --model_output both
python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/client_small_final --test ${DATADIR}/futureData.csv --model_output client
python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/client_small_inter --test ${DATADIR}/futureData.csv --model_output client
python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/both_medium_final --test ${DATADIR}/futureData.csv --model_output both
python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/both_medium_inter --test ${DATADIR}/futureData.csv --model_output both
python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/client_medium_final --test ${DATADIR}/futureData.csv --model_output client
python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/client_medium_inter --test ${DATADIR}/futureData.csv --model_output client
#python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/both_medium_final --test ${DATADIR}/futureData.csv --model_output both
#python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/both_medium_inter --test ${DATADIR}/futureData.csv --model_output both
#python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/client_medium_final --test ${DATADIR}/futureData.csv --model_output client
#python3 main.py --mode fancy --batch 1024 --model ${RESDIR}/client_medium_inter --test ${DATADIR}/futureData.csv --model_output client
#python3 main.py --mode all_fancy --batch 256 --test ${DATADIR}/futureData.csv \
# --models ${RESDIR}/*_small_*/ --out-prefix ${RESDIR}/small
#python3 main.py --mode all_fancy --batch 256 --test ${DATADIR}/futureData.csv \
# --models ${RESDIR}/*_medium_*/ --out-prefix ${RESDIR}/medium
python3 main.py --mode all_fancy --batch 256 --test ${DATADIR}/futureData.csv \
--models ${RESDIR}/*_small_*/ --out-prefix ${RESDIR}/small
python3 main.py --mode all_fancy --batch 256 --test ${DATADIR}/futureData.csv \
--models ${RESDIR}/*_medium_*/ --out-prefix ${RESDIR}/medium
python3 main.py --mode all_fancy --batch 256 --test ${DATADIR}/futureData.csv \
--models ${RESDIR}/*/ --out-prefix ${RESDIR}/all
--models ${RESDIR}/*/ --out-prefix ${RESDIR}/all

32
main.py
View File

@ -288,6 +288,14 @@ def main_visualization():
})
df["client_val"] = np.logical_or(df.hits_vt == 1.0, df.hits_trusted >= 3)
df_user = df.groupby(df.names).max()
paul = dataset.load_predictions("results/paul/")
df_paul = pd.DataFrame(data={
"names": paul["testNames"].flatten(), "client_pred": paul["testScores"].flatten(),
"hits_vt": paul["testLabel"].flatten(), "hits_trusted": paul["testHits"].flatten()
})
df_paul["client_val"] = np.logical_or(df_paul.hits_vt == 1.0, df_paul.hits_trusted >= 3)
df_paul_user = df_paul.groupby(df_paul.names).max()
logger.info("plot model")
model = load_model(args.clf_model, custom_objects=models.get_metrics())
@ -306,22 +314,26 @@ def main_visualization():
logger.info("plot pr curve")
visualize.plot_clf()
visualize.plot_precision_recall(df.client_val.as_matrix(), df.client_pred.as_matrix(), args.model_path)
visualize.plot_precision_recall(df_paul.client_val.as_matrix(), df_paul.client_pred.as_matrix(), "paul")
visualize.plot_legend()
visualize.plot_save("{}/window_client_prc.png".format(args.model_path))
logger.info("plot roc curve")
visualize.plot_clf()
visualize.plot_roc_curve(df.client_val.as_matrix(), df.client_pred.as_matrix(), args.model_path)
visualize.plot_roc_curve(df_paul.client_val.as_matrix(), df_paul.client_pred.as_matrix(), "paul")
visualize.plot_legend()
visualize.plot_save("{}/window_client_roc.png".format(args.model_path))
visualize.plot_clf()
visualize.plot_precision_recall(df_user.client_val.as_matrix(), df_user.client_pred.as_matrix(), args.model_path)
visualize.plot_precision_recall(df_paul_user.client_val.as_matrix(), df_paul_user.client_pred.as_matrix(), "paul")
visualize.plot_legend()
visualize.plot_save("{}/user_client_prc.png".format(args.model_path))
visualize.plot_clf()
visualize.plot_roc_curve(df_user.client_val.as_matrix(), df_user.client_pred.as_matrix(), args.model_path)
visualize.plot_roc_curve(df_paul_user.client_val.as_matrix(), df_paul_user.client_pred.as_matrix(), "paul")
visualize.plot_legend()
visualize.plot_save("{}/user_client_roc.png".format(args.model_path))
@ -351,12 +363,21 @@ def main_visualize_all():
})
res["client_val"] = np.logical_or(res.hits_vt == 1.0, res.hits_trusted >= 3)
return res
paul = dataset.load_predictions("results/paul/")
df_paul = pd.DataFrame(data={
"names": paul["testNames"].flatten(), "client_pred": paul["testScores"].flatten(),
"hits_vt": paul["testLabel"].flatten(), "hits_trusted": paul["testHits"].flatten()
})
df_paul["client_val"] = np.logical_or(df_paul.hits_vt == 1.0, df_paul.hits_trusted >= 3)
df_paul_user = df_paul.groupby(df_paul.names).max()
logger.info("plot pr curves")
visualize.plot_clf()
for model_args in get_model_args(args):
df = load_df(model_args["model_path"])
visualize.plot_precision_recall(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_args["model_path"])
visualize.plot_precision_recall(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_args["model_name"])
visualize.plot_precision_recall(df_paul.client_val.as_matrix(), df_paul.client_pred.as_matrix(), "paul")
visualize.plot_legend()
visualize.plot_save(f"{args.output_prefix}_window_client_prc.png")
@ -364,7 +385,8 @@ def main_visualize_all():
visualize.plot_clf()
for model_args in get_model_args(args):
df = load_df(model_args["model_path"])
visualize.plot_roc_curve(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_args["model_path"])
visualize.plot_roc_curve(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_args["model_name"])
visualize.plot_roc_curve(df_paul.client_val.as_matrix(), df_paul.client_pred.as_matrix(), "paul")
visualize.plot_legend()
visualize.plot_save(f"{args.output_prefix}_window_client_roc.png")
@ -373,7 +395,8 @@ def main_visualize_all():
for model_args in get_model_args(args):
df = load_df(model_args["model_path"])
df = df.groupby(df.names).max()
visualize.plot_precision_recall(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_args["model_path"])
visualize.plot_precision_recall(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_args["model_name"])
visualize.plot_precision_recall(df_paul_user.client_val.as_matrix(), df_paul_user.client_pred.as_matrix(), "paul")
visualize.plot_legend()
visualize.plot_save(f"{args.output_prefix}_user_client_prc.png")
@ -382,7 +405,8 @@ def main_visualize_all():
for model_args in get_model_args(args):
df = load_df(model_args["model_path"])
df = df.groupby(df.names).max()
visualize.plot_roc_curve(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_args["model_path"])
visualize.plot_roc_curve(df.client_val.as_matrix(), df.client_pred.as_matrix(), model_args["model_name"])
visualize.plot_roc_curve(df_paul_user.client_val.as_matrix(), df_paul_user.client_pred.as_matrix(), "paul")
visualize.plot_legend()
visualize.plot_save(f"{args.output_prefix}_user_client_roc.png")

View File

@ -1,11 +1,12 @@
from collections import namedtuple
import keras
from keras.engine import Input, Model as KerasModel
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed
from keras.layers import Activation, Conv1D, Dense, Dropout, Embedding, GlobalMaxPooling1D, TimeDistributed
from keras.regularizers import l2
import dataset
from collections import namedtuple
Model = namedtuple("Model", ["in_domains", "in_flows", "out_client", "out_server"])
best_config = {
@ -33,10 +34,14 @@ best_config = {
def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden_dims, drop_out=0.5) -> KerasModel:
x = y = Input(shape=(input_length,))
y = Embedding(input_dim=dataset.get_vocab_size(), output_dim=embedding_size)(y)
y = Conv1D(filter_size, kernel_size, activation='relu')(y)
y = Conv1D(filter_size,
kernel_size,
kernel_regularizer=l2(0.01),
activation='relu')(y)
y = GlobalMaxPooling1D()(y)
y = Dropout(drop_out)(y)
y = Dense(hidden_dims)(y)
y = Dense(hidden_dims,
kernel_regularizer=l2(0.01))(y)
y = Activation('relu')(y)
return KerasModel(x, y)
@ -50,12 +55,13 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
# CNN processing a small slides of flow windows
y = Conv1D(cnn_dims,
kernel_size,
kernel_regularizer=l2(0.01),
activation='relu',
input_shape=(window_size, domain_features + flow_features))(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(cnnDropout)(y)
y = Dense(dense_dim, activation='relu')(y)
y = Dense(dense_dim, kernel_regularizer=l2(0.01), activation='relu')(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
out_server = Dense(1, activation='sigmoid', name="server")(y)
@ -68,18 +74,25 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn)(ipt_domains)
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
y = Dense(dense_dim, activation="relu", name="dense_server")(merged)
y = Dense(dense_dim,
kernel_regularizer=l2(0.01),
activation="relu",
name="dense_server")(merged)
out_server = Dense(1, activation="sigmoid", name="server")(y)
merged = keras.layers.concatenate([merged, y], -1)
# CNN processing a small slides of flow windows
y = Conv1D(cnn_dims,
kernel_size,
kernel_regularizer=l2(0.01),
activation='relu',
input_shape=(window_size, domain_features + flow_features))(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y)
y = Dense(dense_dim, activation='relu', name="dense_client")(y)
y = Dense(dense_dim,
kernel_regularizer=l2(0.01),
activation='relu',
name="dense_client")(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)

9
run.sh
View File

@ -5,6 +5,8 @@ RESDIR=$1
mkdir -p /tmp/rk/${RESDIR}
DATADIR=$2
EPOCHS=100
for output in client both
do
for depth in small
@ -15,7 +17,7 @@ do
python main.py --mode train \
--train ${DATADIR}/currentData.csv \
--model ${RESDIR}/${output}_${depth}_${mtype} \
--epochs 50 \
--epochs $EPOCHS \
--embd 128 \
--filter_embd 256 --kernel_embd 8 --dense_embd 128 \
--domain_embd 32 \
@ -35,7 +37,7 @@ do
python main.py --mode train \
--train ${DATADIR}/currentData.csv \
--model ${RESDIR}/both_${depth}_staggered \
--epochs 50 \
--epochs $EPOCHS \
--embd 128 \
--filter_embd 256 --kernel_embd 8 --dense_embd 128 \
--domain_embd 32 \
@ -46,3 +48,6 @@ do
--type staggered \
--depth ${depth}
done
# python main.py --mode train --epochs 100 --embd 64 --filter_embd 128 --kernel_embd 5 --dense_embd 128 --domain_embd 32 --filter_main 32 --kernel_main 5 --dense_main 512 --batch 256 --balanced_weights --model_output ${output} --type ${mtype} --depth ${depth} --train ${DATADIR}/currentData.csv --model ${RESDIR}/${output}_${depth}_${mtype}
# python main.py --mode train --epochs 100 --embd 64 --filter_embd 128 --kernel_embd 5 --dense_embd 128 --domain_embd 32 --filter_main 32 --kernel_main 5 --dense_main 512 --batch 256 --balanced_weights --model_output ${output} --type ${mtype} --depth ${depth} --train ${DATADIR}/currentData.csv --model ${RESDIR}/${output}_${depth}_${mtype}

View File

@ -5,7 +5,7 @@ import numpy as np
from sklearn.decomposition import TruncatedSVD
from sklearn.metrics import (
auc, classification_report, confusion_matrix, fbeta_score, precision_recall_curve,
roc_auc_score, roc_curve, average_precision_score
roc_auc_score, roc_curve
)
@ -54,7 +54,7 @@ def plot_precision_recall(y, y_pred, label=""):
# ax.hold(True)
score = fbeta_score(y, y_pred.round(), 1)
# prc_ap = average_precision_score(y, y_pred)
plt.plot(recall, precision, '--', label=f"{label} - {score}")
plt.plot(recall, precision, '--', label=f"{label} - {score:5.4}")
# ax.step(recall[::-1], decreasing_max_precision, '-r')
plt.xlabel('Recall')
plt.ylabel('Precision')
@ -90,7 +90,7 @@ def plot_roc_curve(mask, prediction, label=""):
fpr, tpr, thresholds = roc_curve(y, y_pred)
roc_auc = auc(fpr, tpr)
plt.xscale('log')
plt.plot(fpr, tpr, label=f"{label} - {roc_auc}")
plt.plot(fpr, tpr, label=f"{label} - {roc_auc:5.4}")
def plot_confusion_matrix(y_true, y_pred, path,