fix network props, add PCA to visualize main
This commit is contained in:
parent
6b787792db
commit
336be37032
33
main.py
33
main.py
@ -7,6 +7,7 @@ import pandas as pd
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping
|
from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping
|
||||||
from keras.models import load_model
|
from keras.models import load_model
|
||||||
|
from sklearn.decomposition import PCA
|
||||||
from sklearn.utils import class_weight
|
from sklearn.utils import class_weight
|
||||||
|
|
||||||
import arguments
|
import arguments
|
||||||
@ -122,7 +123,7 @@ def main_train(param=None):
|
|||||||
|
|
||||||
# parameter
|
# parameter
|
||||||
p = {
|
p = {
|
||||||
"type": "paul",
|
"type": args.model_type,
|
||||||
"batch_size": 64,
|
"batch_size": 64,
|
||||||
"window_size": args.window,
|
"window_size": args.window,
|
||||||
"domain_length": args.domain_length,
|
"domain_length": args.domain_length,
|
||||||
@ -134,7 +135,8 @@ def main_train(param=None):
|
|||||||
'embedding_size': args.embedding,
|
'embedding_size': args.embedding,
|
||||||
'filter_main': 128,
|
'filter_main': 128,
|
||||||
'flow_features': 3,
|
'flow_features': 3,
|
||||||
'dense_main': 512,
|
# 'dense_main': 512,
|
||||||
|
'dense_main': 128,
|
||||||
'filter_embedding': args.hidden_char_dims,
|
'filter_embedding': args.hidden_char_dims,
|
||||||
'hidden_embedding': args.domain_embedding,
|
'hidden_embedding': args.domain_embedding,
|
||||||
'kernel_embedding': 3,
|
'kernel_embedding': 3,
|
||||||
@ -167,6 +169,7 @@ def main_train(param=None):
|
|||||||
if args.class_weights:
|
if args.class_weights:
|
||||||
logger.info("class weights: compute custom weights")
|
logger.info("class weights: compute custom weights")
|
||||||
custom_class_weights = get_custom_class_weights(client_tr, server_tr)
|
custom_class_weights = get_custom_class_weights(client_tr, server_tr)
|
||||||
|
logger.info(custom_class_weights)
|
||||||
else:
|
else:
|
||||||
logger.info("class weights: set default")
|
logger.info("class weights: set default")
|
||||||
custom_class_weights = None
|
custom_class_weights = None
|
||||||
@ -197,11 +200,11 @@ def main_test():
|
|||||||
|
|
||||||
|
|
||||||
def main_visualization():
|
def main_visualization():
|
||||||
_, _, client_val, server_val = load_or_generate_h5data(args.test_h5data, args.test_data,
|
domain_val, flow_val, client_val, server_val = load_or_generate_h5data(args.test_h5data, args.test_data,
|
||||||
args.domain_length, args.window)
|
args.domain_length, args.window)
|
||||||
logger.info("plot model")
|
logger.info("plot model")
|
||||||
model = load_model(args.clf_model, custom_objects=models.get_metrics())
|
model = load_model(args.clf_model, custom_objects=models.get_metrics())
|
||||||
visualize.plot_model(model, args.model_path + "model.png")
|
visualize.plot_model(model, os.path.join(args.model_path, "model.png"))
|
||||||
logger.info("plot training curve")
|
logger.info("plot training curve")
|
||||||
logs = pd.read_csv(args.train_log)
|
logs = pd.read_csv(args.train_log)
|
||||||
visualize.plot_training_curve(logs, "client", "{}/client_train.png".format(args.model_path))
|
visualize.plot_training_curve(logs, "client", "{}/client_train.png".format(args.model_path))
|
||||||
@ -223,6 +226,26 @@ def main_visualization():
|
|||||||
"{}/server_cov.png".format(args.model_path),
|
"{}/server_cov.png".format(args.model_path),
|
||||||
normalize=False, title="Server Confusion Matrix")
|
normalize=False, title="Server Confusion Matrix")
|
||||||
|
|
||||||
|
# embedding visi
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
model = load_model(args.embedding_model)
|
||||||
|
domains = np.reshape(domain_val, (12800, 40))
|
||||||
|
domain_embedding = model.predict(domains)
|
||||||
|
|
||||||
|
pca = PCA(n_components=2)
|
||||||
|
domain_reduced = pca.fit_transform(domain_embedding)
|
||||||
|
print(pca.explained_variance_ratio_)
|
||||||
|
|
||||||
|
clients = np.repeat(client_val, 10, axis=0)
|
||||||
|
clients = clients.argmax(1)
|
||||||
|
servers = np.repeat(server_val, 10, axis=0)
|
||||||
|
servers = servers.argmax(1)
|
||||||
|
|
||||||
|
plt.scatter(domain_reduced[:, 0], domain_reduced[:, 1], c=clients, cmap=plt.cm.bwr, s=2)
|
||||||
|
plt.show()
|
||||||
|
plt.scatter(domain_reduced[:, 0], domain_reduced[:, 1], c=servers, cmap=plt.cm.bwr, s=2)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
def main_score():
|
def main_score():
|
||||||
# mask = dataset.load_mask_eval(args.data, args.test_image)
|
# mask = dataset.load_mask_eval(args.data, args.test_image)
|
||||||
|
@ -25,12 +25,12 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
|||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||||
# CNN processing a small slides of flow windows
|
# CNN processing a small slides of flow windows
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu',
|
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu', padding="same",
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu')(y)
|
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu', padding="same")(y)
|
||||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu')(y)
|
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu', padding="same")(y)
|
||||||
# remove temporal dimension by global max pooling
|
# remove temporal dimension by global max pooling
|
||||||
y = GlobalMaxPooling1D()(y)
|
y = GlobalMaxPooling1D()(y)
|
||||||
y = Dropout(cnnDropout)(y)
|
y = Dropout(cnnDropout)(y)
|
||||||
|
Loading…
Reference in New Issue
Block a user