add deeper domain cnn; refactor hyperband using load_data function
This commit is contained in:
@@ -26,6 +26,7 @@ def get_models_by_params(params: dict):
|
||||
K.clear_session()
|
||||
# decomposing param section
|
||||
# mainly embedding model
|
||||
embedding_type = params.get("embedding_type", "small")
|
||||
network_type = params.get("type")
|
||||
# network_depth = params.get("depth")
|
||||
embedding_size = params.get("embedding")
|
||||
@@ -42,8 +43,14 @@ def get_models_by_params(params: dict):
|
||||
dense_dim = params.get("dense_main")
|
||||
model_output = params.get("model_output", "both")
|
||||
|
||||
domain_cnn = networks.get_domain_embedding_model(embedding_size, domain_length, filter_embedding, kernel_embedding,
|
||||
hidden_embedding, 0.5)
|
||||
if embedding_type == "small":
|
||||
domain_cnn = networks.get_domain_embedding_model(embedding_size, domain_length, filter_embedding,
|
||||
kernel_embedding, hidden_embedding, 0.5)
|
||||
elif embedding_type == "deep":
|
||||
domain_cnn = networks.get_domain_embedding_model2(embedding_size, domain_length, filter_embedding,
|
||||
kernel_embedding, hidden_embedding, 0.5)
|
||||
else:
|
||||
raise ValueError("embedding type not found")
|
||||
|
||||
if network_type == "final":
|
||||
model = networks.get_final_model(0.25, flow_features, window_size, domain_length,
|
||||
@@ -65,7 +72,7 @@ def get_models_by_params(params: dict):
|
||||
conv_client = model.get_layer("conv_client").trainable_weights
|
||||
l1 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(conv_server, conv_client)]
|
||||
model.add_loss(l1)
|
||||
|
||||
|
||||
dense_server = model.get_layer("dense_server").trainable_weights
|
||||
dense_client = model.get_layer("dense_client").trainable_weights
|
||||
l2 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(dense_server, dense_client)]
|
||||
|
Reference in New Issue
Block a user