change model - add dense before server output in new model
add some new run scripts
This commit is contained in:
parent
6e7dc1297c
commit
5a02f582cd
1
main.py
1
main.py
@ -156,6 +156,7 @@ def main_train(param=None):
|
|||||||
logger.info("compile and train model")
|
logger.info("compile and train model")
|
||||||
embedding.summary()
|
embedding.summary()
|
||||||
model.summary()
|
model.summary()
|
||||||
|
logger.info(model.get_config())
|
||||||
model.compile(optimizer='adam',
|
model.compile(optimizer='adam',
|
||||||
loss='binary_crossentropy',
|
loss='binary_crossentropy',
|
||||||
metrics=['accuracy'] + custom_metrics)
|
metrics=['accuracy'] + custom_metrics)
|
||||||
|
@ -68,10 +68,10 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
|
|||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||||
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||||
y2 = Dense(1, activation="sigmoid", name="server")(encoded)
|
y = Dense(dense_dim, activation="relu")(merged)
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows, y2], -1)
|
y2 = Dense(1, activation="sigmoid", name="server")(y)
|
||||||
|
# CNN processing a small slides of flow windows
|
||||||
y = Conv1D(cnn_dims,
|
y = Conv1D(cnn_dims,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
activation='relu',
|
activation='relu',
|
||||||
|
@ -51,14 +51,16 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
|
|||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||||
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||||
y2 = Dense(1, activation="sigmoid", name="server")(encoded)
|
y = Dense(dense_dim, activation="relu")(merged)
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows, y2], -1)
|
y2 = Dense(1, activation="sigmoid", name="server")(y)
|
||||||
|
# CNN processing a small slides of flow windows
|
||||||
y = Conv1D(cnn_dims,
|
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu', padding="same",
|
||||||
kernel_size,
|
input_shape=(window_size, domain_features + flow_features))(y)
|
||||||
activation='relu',
|
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu', padding="same")(y)
|
||||||
|
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||||
|
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu', padding="same")(y)
|
||||||
# remove temporal dimension by global max pooling
|
# remove temporal dimension by global max pooling
|
||||||
y = GlobalMaxPooling1D()(y)
|
y = GlobalMaxPooling1D()(y)
|
||||||
y = Dropout(dropout)(y)
|
y = Dropout(dropout)(y)
|
||||||
|
63
run.sh
63
run.sh
@ -4,30 +4,29 @@ python main.py --mode train \
|
|||||||
--train /tmp/rk/currentData.csv \
|
--train /tmp/rk/currentData.csv \
|
||||||
--model /tmp/rk/results/simple_both \
|
--model /tmp/rk/results/simple_both \
|
||||||
--epochs 25 \
|
--epochs 25 \
|
||||||
--hidden_char_dims 128 \
|
--embd 64 \
|
||||||
|
--hidden_chaar_dims 128 \
|
||||||
--domain_embd 32 \
|
--domain_embd 32 \
|
||||||
--batch 256 \
|
--batch 256 \
|
||||||
--balanced_weights \
|
--balanced_weights \
|
||||||
--model_output both
|
--model_output both
|
||||||
|
|
||||||
python main.py --mode test --batch 512 --model /tmp/rk/results/simple_both --test /tmp/rk/futureData.csv --model_output both
|
|
||||||
|
|
||||||
python main.py --mode train \
|
python main.py --mode train \
|
||||||
--train /tmp/rk/currentData.csv \
|
--train /tmp/rk/currentData.csv \
|
||||||
--model /tmp/rk/results/simple_client \
|
--model /tmp/rk/results/simple_client \
|
||||||
--epochs 25 \
|
--epochs 25 \
|
||||||
|
--embd 64 \
|
||||||
--hidden_char_dims 128 \
|
--hidden_char_dims 128 \
|
||||||
--domain_embd 32 \
|
--domain_embd 32 \
|
||||||
--batch 256 \
|
--batch 256 \
|
||||||
--balanced_weights \
|
--balanced_weights \
|
||||||
--model_output client
|
--model_output client
|
||||||
|
|
||||||
python main.py --mode test --batch 512 --model /tmp/rk/results/simple_client --test /tmp/rk/futureData.csv --model_output client
|
|
||||||
|
|
||||||
python main.py --mode train \
|
python main.py --mode train \
|
||||||
--train /tmp/rk/currentData.csv \
|
--train /tmp/rk/currentData.csv \
|
||||||
--model /tmp/rk/results/simple_new_both \
|
--model /tmp/rk/results/simple_new_both \
|
||||||
--epochs 25 \
|
--epochs 25 \
|
||||||
|
--embd 64 \
|
||||||
--hidden_char_dims 128 \
|
--hidden_char_dims 128 \
|
||||||
--domain_embd 32 \
|
--domain_embd 32 \
|
||||||
--batch 256 \
|
--batch 256 \
|
||||||
@ -35,17 +34,65 @@ python main.py --mode train \
|
|||||||
--model_output both \
|
--model_output both \
|
||||||
--new_model
|
--new_model
|
||||||
|
|
||||||
python main.py --mode test --batch 512 --model /tmp/rk/results/simple_new_both --test /tmp/rk/futureData.csv --model_output both
|
|
||||||
|
|
||||||
python main.py --mode train \
|
python main.py --mode train \
|
||||||
--train /tmp/rk/currentData.csv \
|
--train /tmp/rk/currentData.csv \
|
||||||
--model /tmp/rk/results/simple_new_client \
|
--model /tmp/rk/results/simple_new_client \
|
||||||
--epochs 25 \
|
--epochs 25 \
|
||||||
|
--embd 64 \
|
||||||
--hidden_char_dims 128 \
|
--hidden_char_dims 128 \
|
||||||
--domain_embd 32 \
|
--domain_embd 32 \
|
||||||
--batch 256 \
|
--batch 256 \
|
||||||
--balanced_weights \
|
--balanced_weights \
|
||||||
--model_output client \
|
--model_output client \
|
||||||
--new_model
|
--new_model
|
||||||
|
##
|
||||||
|
##
|
||||||
|
python main.py --mode train \
|
||||||
|
--train /tmp/rk/currentData.csv \
|
||||||
|
--model /tmp/rk/results/simple_both \
|
||||||
|
--epochs 25 \
|
||||||
|
--embd 64 \
|
||||||
|
--hidden_chaar_dims 128 \
|
||||||
|
--domain_embd 32 \
|
||||||
|
--batch 256 \
|
||||||
|
--balanced_weights \
|
||||||
|
--model_output both \
|
||||||
|
--type rene
|
||||||
|
|
||||||
python main.py --mode test --batch 512 --model /tmp/rk/results/simple_new_client --test /tmp/rk/futureData.csv --model_output client
|
python main.py --mode train \
|
||||||
|
--train /tmp/rk/currentData.csv \
|
||||||
|
--model /tmp/rk/results/simple_client \
|
||||||
|
--epochs 25 \
|
||||||
|
--embd 64 \
|
||||||
|
--hidden_char_dims 128 \
|
||||||
|
--domain_embd 32 \
|
||||||
|
--batch 256 \
|
||||||
|
--balanced_weights \
|
||||||
|
--model_output client \
|
||||||
|
--type rene
|
||||||
|
|
||||||
|
python main.py --mode train \
|
||||||
|
--train /tmp/rk/currentData.csv \
|
||||||
|
--model /tmp/rk/results/simple_new_both \
|
||||||
|
--epochs 25 \
|
||||||
|
--embd 64 \
|
||||||
|
--hidden_char_dims 128 \
|
||||||
|
--domain_embd 32 \
|
||||||
|
--batch 256 \
|
||||||
|
--balanced_weights \
|
||||||
|
--model_output both \
|
||||||
|
--new_model \
|
||||||
|
--type rene
|
||||||
|
|
||||||
|
python main.py --mode train \
|
||||||
|
--train /tmp/rk/currentData.csv \
|
||||||
|
--model /tmp/rk/results/simple_new_client \
|
||||||
|
--epochs 25 \
|
||||||
|
--embd 64 \
|
||||||
|
--hidden_char_dims 128 \
|
||||||
|
--domain_embd 32 \
|
||||||
|
--batch 256 \
|
||||||
|
--balanced_weights \
|
||||||
|
--model_output client \
|
||||||
|
--new_model \
|
||||||
|
--type rene
|
||||||
|
11
test.sh
Normal file
11
test.sh
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
python main.py --mode test --batch 1024 --model /tmp/rk/results/simple_both --test /tmp/rk/futureData.csv --model_output both --type paul
|
||||||
|
python main.py --mode test --batch 1024 --model /tmp/rk/results/simple_client --test /tmp/rk/futureData.csv --model_output client --type paul
|
||||||
|
python main.py --mode test --batch 1024 --model /tmp/rk/results/simple_new_both --test /tmp/rk/futureData.csv --model_output both --type paul
|
||||||
|
python main.py --mode test --batch 1024 --model /tmp/rk/results/simple_new_client --test /tmp/rk/futureData.csv --model_output client --type paul
|
||||||
|
|
||||||
|
python main.py --mode test --batch 1024 --model /tmp/rk/results/simple_both --test /tmp/rk/futureData.csv --model_output both --type rene
|
||||||
|
python main.py --mode test --batch 1024 --model /tmp/rk/results/simple_client --test /tmp/rk/futureData.csv --model_output client --type rene
|
||||||
|
python main.py --mode test --batch 1024 --model /tmp/rk/results/simple_new_both --test /tmp/rk/futureData.csv --model_output both --type rene
|
||||||
|
python main.py --mode test --batch 1024 --model /tmp/rk/results/simple_new_client --test /tmp/rk/futureData.csv --model_output client --type rene
|
@ -2,7 +2,7 @@ import os
|
|||||||
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from keras.utils import plot_model
|
from keras.utils.vis_utils import plot_model
|
||||||
from sklearn.decomposition import TruncatedSVD
|
from sklearn.decomposition import TruncatedSVD
|
||||||
from sklearn.metrics import (
|
from sklearn.metrics import (
|
||||||
auc, classification_report, confusion_matrix, fbeta_score, precision_recall_curve,
|
auc, classification_report, confusion_matrix, fbeta_score, precision_recall_curve,
|
||||||
|
Loading…
Reference in New Issue
Block a user