refactor models package: create separate modules for pauls and renes networks
This commit is contained in:
parent
3862dce975
commit
7c05ef6a12
14
main.py
14
main.py
@ -87,10 +87,6 @@ def main():
|
|||||||
kernel_size = 3
|
kernel_size = 3
|
||||||
drop_out = 0.5
|
drop_out = 0.5
|
||||||
filters = 128
|
filters = 128
|
||||||
hidden_dims = 100
|
|
||||||
vocabSize = 40
|
|
||||||
threshold = 3
|
|
||||||
minFlowsPerUser = 10
|
|
||||||
|
|
||||||
char_dict = dataset.get_character_dict()
|
char_dict = dataset.get_character_dict()
|
||||||
user_flow_df = dataset.get_user_flow_data()
|
user_flow_df = dataset.get_user_flow_data()
|
||||||
@ -110,13 +106,13 @@ def main():
|
|||||||
client_labels = client_labels[idx]
|
client_labels = client_labels[idx]
|
||||||
server_labels = server_tr[idx]
|
server_labels = server_tr[idx]
|
||||||
|
|
||||||
shared_cnn = models.get_embedding_network_rene(len(char_dict) + 1, args.embedding, args.domain_length,
|
shared_cnn = models.renes_networks.get_embedding(len(char_dict) + 1, args.embedding, args.domain_length,
|
||||||
args.hidden_char_dims, args.domain_embedding, 0.5)
|
args.hidden_char_dims, kernel_size, args.domain_embedding, 0.5)
|
||||||
shared_cnn.summary()
|
shared_cnn.summary()
|
||||||
|
|
||||||
model = models.get_top_cnn_rene(cnnDropout, flowFeatures, args.domain_embedding,
|
model = models.renes_networks.get_model(cnnDropout, flowFeatures, args.domain_embedding,
|
||||||
args.window, args.domain_length, filters, kernel_size,
|
args.window, args.domain_length, filters, kernel_size,
|
||||||
cnnHiddenDims, shared_cnn)
|
cnnHiddenDims, shared_cnn)
|
||||||
model.summary()
|
model.summary()
|
||||||
|
|
||||||
model.compile(optimizer='adam',
|
model.compile(optimizer='adam',
|
||||||
|
81
models.py
81
models.py
@ -1,81 +0,0 @@
|
|||||||
import keras
|
|
||||||
from keras.engine import Input, Model
|
|
||||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed, MaxPool1D
|
|
||||||
|
|
||||||
|
|
||||||
# designed by paul
|
|
||||||
def get_embedding_network_paul(vocab_size, embedding_size, input_length, filters, kernel_size,
|
|
||||||
hidden_dims, drop_out=0.5):
|
|
||||||
x = y = Input(shape=(input_length,))
|
|
||||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
|
|
||||||
y = Conv1D(filters, kernel_size, activation='relu')(y)
|
|
||||||
y = GlobalMaxPooling1D()(y)
|
|
||||||
y = Dense(hidden_dims)(y)
|
|
||||||
y = Dropout(drop_out)(y)
|
|
||||||
y = Activation('relu')(y)
|
|
||||||
return Model(x, y)
|
|
||||||
|
|
||||||
|
|
||||||
def get_embedding_network_rene(vocab_size, embedding_size, input_length,
|
|
||||||
hidden_char_dims, hidden_dims, drop_out=0.5):
|
|
||||||
x = y = Input(shape=(input_length,))
|
|
||||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size, mask_zero=True)(y)
|
|
||||||
y = Conv1D(hidden_char_dims, kernel_size=5, activation='relu')(y)
|
|
||||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
|
||||||
y = Conv1D(hidden_char_dims, kernel_size=3, activation='relu')(y)
|
|
||||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
|
||||||
y = Conv1D(hidden_char_dims, kernel_size=3, activation='relu')(y)
|
|
||||||
y = GlobalMaxPooling1D()(y)
|
|
||||||
y = Dense(hidden_dims)(y)
|
|
||||||
y = Dropout(drop_out)(y)
|
|
||||||
y = Activation('relu')(y)
|
|
||||||
return Model(x, y)
|
|
||||||
|
|
||||||
|
|
||||||
def get_full_model(vocabSize, embeddingSize, maxLen, domainFeatures, flowFeatures,
|
|
||||||
filters, h1, h2, dropout, dense):
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
# designed by paul
|
|
||||||
def get_top_cnn(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
||||||
dense_dim,
|
|
||||||
cnn):
|
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
||||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
||||||
# CNN processing a small slides of flow windows
|
|
||||||
# TODO: add more layers?
|
|
||||||
y = Conv1D(cnn_dims,
|
|
||||||
kernel_size,
|
|
||||||
activation='relu',
|
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
|
||||||
# remove temporal dimension by global max pooling
|
|
||||||
y = GlobalMaxPooling1D()(y)
|
|
||||||
y = Dropout(cnnDropout)(y)
|
|
||||||
y = Dense(dense_dim, activation='relu')(y)
|
|
||||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
|
||||||
y2 = Dense(2, activation='softmax', name="server")(y)
|
|
||||||
|
|
||||||
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
|
||||||
|
|
||||||
|
|
||||||
def get_top_cnn_rene(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
||||||
dense_dim, cnn):
|
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
|
||||||
encoded = TimeDistributed(cnn)(ipt_domains)
|
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
|
||||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
|
||||||
# CNN processing a small slides of flow windows
|
|
||||||
# TODO: add more layers?
|
|
||||||
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu',
|
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
|
||||||
# remove temporal dimension by global max pooling
|
|
||||||
y = GlobalMaxPooling1D()(y)
|
|
||||||
y = Dropout(cnnDropout)(y)
|
|
||||||
y = Dense(dense_dim, activation='relu')(y)
|
|
||||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
|
||||||
y2 = Dense(2, activation='softmax', name="server")(y)
|
|
||||||
|
|
||||||
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
|
2
models/__init__.py
Normal file
2
models/__init__.py
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
from . import pauls_networks
|
||||||
|
from . import renes_networks
|
37
models/pauls_networks.py
Normal file
37
models/pauls_networks.py
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
import keras
|
||||||
|
from keras.engine import Input, Model
|
||||||
|
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed
|
||||||
|
|
||||||
|
|
||||||
|
def get_embedding(vocab_size, embedding_size, input_length,
|
||||||
|
filters, kernel_size, hidden_dims, drop_out=0.5):
|
||||||
|
x = y = Input(shape=(input_length,))
|
||||||
|
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
|
||||||
|
y = Conv1D(filters, kernel_size, activation='relu')(y)
|
||||||
|
y = GlobalMaxPooling1D()(y)
|
||||||
|
y = Dense(hidden_dims)(y)
|
||||||
|
y = Dropout(drop_out)(y)
|
||||||
|
y = Activation('relu')(y)
|
||||||
|
return Model(x, y)
|
||||||
|
|
||||||
|
|
||||||
|
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||||
|
dense_dim, cnn):
|
||||||
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||||
|
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||||
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||||
|
# CNN processing a small slides of flow windows
|
||||||
|
# TODO: add more layers?
|
||||||
|
y = Conv1D(cnn_dims,
|
||||||
|
kernel_size,
|
||||||
|
activation='relu',
|
||||||
|
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||||
|
# remove temporal dimension by global max pooling
|
||||||
|
y = GlobalMaxPooling1D()(y)
|
||||||
|
y = Dropout(cnnDropout)(y)
|
||||||
|
y = Dense(dense_dim, activation='relu')(y)
|
||||||
|
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||||
|
y2 = Dense(2, activation='softmax', name="server")(y)
|
||||||
|
|
||||||
|
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
40
models/renes_networks.py
Normal file
40
models/renes_networks.py
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
import keras
|
||||||
|
from keras.engine import Input, Model
|
||||||
|
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, TimeDistributed, MaxPool1D
|
||||||
|
|
||||||
|
|
||||||
|
def get_embedding(vocab_size, embedding_size, input_length,
|
||||||
|
hidden_char_dims, kernel_size, hidden_dims, drop_out=0.5):
|
||||||
|
x = y = Input(shape=(input_length,))
|
||||||
|
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
|
||||||
|
y = Conv1D(hidden_char_dims, kernel_size=5, activation='relu')(y)
|
||||||
|
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||||
|
y = Conv1D(hidden_char_dims, kernel_size=3, activation='relu')(y)
|
||||||
|
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||||
|
y = Conv1D(hidden_char_dims, kernel_size=3, activation='relu')(y)
|
||||||
|
y = GlobalMaxPooling1D()(y)
|
||||||
|
y = Dropout(drop_out)(y)
|
||||||
|
y = Dense(hidden_dims, activation="relu")(y)
|
||||||
|
return Model(x, y)
|
||||||
|
|
||||||
|
|
||||||
|
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||||
|
dense_dim, cnn):
|
||||||
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||||
|
encoded = TimeDistributed(cnn)(ipt_domains)
|
||||||
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
|
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||||
|
# CNN processing a small slides of flow windows
|
||||||
|
# TODO: add more layers?
|
||||||
|
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu',
|
||||||
|
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||||
|
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||||
|
y = Conv1D(filters=cnn_dims, kernel_size=kernel_size, activation='relu')(y)
|
||||||
|
# remove temporal dimension by global max pooling
|
||||||
|
y = GlobalMaxPooling1D()(y)
|
||||||
|
y = Dropout(cnnDropout)(y)
|
||||||
|
y = Dense(dense_dim, activation='relu')(y)
|
||||||
|
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||||
|
y2 = Dense(2, activation='softmax', name="server")(y)
|
||||||
|
|
||||||
|
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))
|
Loading…
Reference in New Issue
Block a user