refactor network models; remove depths

This commit is contained in:
2017-11-07 20:32:08 +01:00
parent e12bbda8c5
commit 826357a41f
7 changed files with 109 additions and 409 deletions

View File

@@ -1,9 +1,7 @@
import keras.backend as K
from keras.models import Model
from models import deep1
from models.renes_networks import selu
from . import flat_2, pauls_networks, renes_networks
from . import networks
from .metrics import *
def create_model(model, output_type):
@@ -13,7 +11,7 @@ def create_model(model, output_type):
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client,))
else:
raise Exception("unknown model output")
def get_models_by_params(params: dict):
# decomposing param section
@@ -33,36 +31,25 @@ def get_models_by_params(params: dict):
kernel_main = params.get("kernel_main")
dense_dim = params.get("dense_main")
model_output = params.get("model_output", "both")
# create models
if network_depth == "flat1":
networks = pauls_networks
elif network_depth == "flat2":
networks = flat_2
elif network_depth == "deep1":
networks = deep1
elif network_depth == "deep2":
networks = renes_networks
else:
raise ValueError("network not found")
domain_cnn = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding,
hidden_embedding, 0.5)
domain_cnn = networks.get_domain_embedding_model(embedding_size, domain_length, filter_embedding, kernel_embedding,
hidden_embedding, 0.5)
if network_type == "final":
model = networks.get_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = networks.get_final_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output)
elif network_type in ("inter", "staggered"):
model = networks.get_new_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = networks.get_inter_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output)
elif network_type == "long":
model = networks.get_new_model2(0.25, flow_features, window_size, domain_length,
model = networks.get_long_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output)
elif network_type == "soft":
model = networks.get_new_soft(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = networks.get_long_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output)
conv_server = model.get_layer("conv_server").trainable_weights
conv_client = model.get_layer("conv_client").trainable_weights
@@ -92,68 +79,9 @@ def get_server_model_by_params(params: dict):
flow_features = params.get("flow_features")
domain_length = params.get("domain_length")
dense_dim = params.get("dense_main")
# create models
if network_depth == "flat1":
networks = pauls_networks
elif network_depth == "flat2":
networks = flat_2
elif network_depth == "deep1":
networks = deep1
elif network_depth == "deep2":
networks = renes_networks
else:
raise Exception("network not found")
embedding_model = networks.get_embedding(embedding_size, input_length, filter_embedding, kernel_embedding,
hidden_embedding, 0.5)
embedding_model = networks.get_domain_embedding_model(embedding_size, input_length, filter_embedding,
kernel_embedding,
hidden_embedding, 0.5)
return networks.get_server_model(flow_features, domain_length, dense_dim, embedding_model)
def get_custom_objects():
return dict([
("precision", precision),
("recall", recall),
("f1_score", f1_score),
("selu", selu)
])
def get_metric_functions():
return [precision, recall, f1_score]
def precision(y_true, y_pred):
# Count positive samples.
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
return true_positives / (predicted_positives + K.epsilon())
def recall(y_true, y_pred):
# Count positive samples.
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
return true_positives / (possible_positives + K.epsilon())
def f1_score(y_true, y_pred):
return f_score(1)(y_true, y_pred)
def f05_score(y_true, y_pred):
return f_score(0.5)(y_true, y_pred)
def f_score(beta):
def _f(y_true, y_pred):
p = precision(y_true, y_pred)
r = recall(y_true, y_pred)
bb = beta ** 2
fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon())
return fbeta_score
return _f