replace pca reduction by sklearn's truncated svd
This commit is contained in:
parent
2593131e9e
commit
8cd1023165
10
visualize.py
10
visualize.py
@ -3,7 +3,7 @@ import os
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from keras.utils import plot_model
|
from keras.utils import plot_model
|
||||||
from sklearn.decomposition import PCA
|
from sklearn.decomposition import TruncatedSVD
|
||||||
from sklearn.metrics import (
|
from sklearn.metrics import (
|
||||||
auc, classification_report, confusion_matrix, fbeta_score, precision_recall_curve,
|
auc, classification_report, confusion_matrix, fbeta_score, precision_recall_curve,
|
||||||
roc_auc_score, roc_curve
|
roc_auc_score, roc_curve
|
||||||
@ -146,13 +146,11 @@ def plot_training_curve(logs, key, path, dpi=600):
|
|||||||
|
|
||||||
|
|
||||||
def plot_embedding(domain_embedding, labels, path, dpi=600):
|
def plot_embedding(domain_embedding, labels, path, dpi=600):
|
||||||
pca = PCA(n_components=2)
|
svd = TruncatedSVD(n_components=2)
|
||||||
domain_reduced = pca.fit_transform(domain_embedding)
|
domain_reduced = svd.fit_transform(domain_embedding)
|
||||||
print(pca.explained_variance_ratio_)
|
print(svd.explained_variance_ratio_)
|
||||||
|
|
||||||
# use if draw subset of predictions
|
# use if draw subset of predictions
|
||||||
# idx = np.random.choice(np.arange(len(domain_reduced)), 10000)
|
# idx = np.random.choice(np.arange(len(domain_reduced)), 10000)
|
||||||
|
|
||||||
plt.scatter(domain_reduced[:, 0],
|
plt.scatter(domain_reduced[:, 0],
|
||||||
domain_reduced[:, 1],
|
domain_reduced[:, 1],
|
||||||
c=(labels * (1, 2)).sum(1).astype(int),
|
c=(labels * (1, 2)).sum(1).astype(int),
|
||||||
|
Loading…
Reference in New Issue
Block a user