add soft parameter sharing network

This commit is contained in:
René Knaebel 2017-11-06 21:51:49 +01:00
parent 7b8dfcebbe
commit b1f48c1895
4 changed files with 82 additions and 3 deletions

View File

@ -8,6 +8,7 @@ from random import random as rng
from time import ctime, time from time import ctime, time
import joblib import joblib
import keras.backend as K
import numpy as np import numpy as np
from keras.callbacks import EarlyStopping from keras.callbacks import EarlyStopping
@ -47,14 +48,28 @@ class Hyperband:
def try_params(self, n_iterations, params): def try_params(self, n_iterations, params):
n_iterations = int(round(n_iterations)) n_iterations = int(round(n_iterations))
embedding, model, new_model, long_model = models.get_models_by_params(params) embedding, model, new_model, long_model, soft_model = models.get_models_by_params(params)
if params["type"] in ("inter", "staggered"): if params["type"] in ("inter", "staggered"):
model = new_model model = new_model
if params["type"] == "long": if params["type"] == "long":
model = long_model model = long_model
if params["type"] == "soft":
model = soft_model
model = create_model(model, params["model_output"]) model = create_model(model, params["model_output"])
if params["type"] == "soft":
conv_server = model.get_layer("conv_server").trainable_weights
conv_client = model.get_layer("conv_client").trainable_weights
l1 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(conv_server, conv_client)]
model.add_loss(l1)
dense_server = model.get_layer("dense_server").trainable_weights
dense_client = model.get_layer("dense_client").trainable_weights
l2 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(dense_server, dense_client)]
model.add_loss(l2)
callbacks = [EarlyStopping(monitor='val_loss', callbacks = [EarlyStopping(monitor='val_loss',
patience=5, patience=5,
verbose=False)] verbose=False)]

17
main.py
View File

@ -3,6 +3,7 @@ import operator
import os import os
import joblib import joblib
import keras.backend as K
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import tensorflow as tf import tensorflow as tf
@ -246,14 +247,28 @@ def main_train(param=None):
custom_sample_weights = None custom_sample_weights = None
logger.info(f"Generator model with params: {param}") logger.info(f"Generator model with params: {param}")
embedding, model, new_model, long_model = models.get_models_by_params(param) embedding, model, new_model, long_model, soft_model = models.get_models_by_params(param)
if args.model_type in ("inter", "staggered"): if args.model_type in ("inter", "staggered"):
model = new_model model = new_model
if args.model_type == "long": if args.model_type == "long":
model = long_model model = long_model
if args.model_type == "soft":
model = soft_model
model = create_model(model, args.model_output) model = create_model(model, args.model_output)
if args.model_type == "soft":
conv_server = model.get_layer("conv_server").trainable_weights
conv_client = model.get_layer("conv_client").trainable_weights
l1 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(conv_server, conv_client)]
model.add_loss(l1)
dense_server = model.get_layer("dense_server").trainable_weights
dense_client = model.get_layer("dense_client").trainable_weights
l2 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(dense_server, dense_client)]
model.add_loss(l2)
features = {"ipt_domains": domain_tr.value, "ipt_flows": flow_tr.value} features = {"ipt_domains": domain_tr.value, "ipt_flows": flow_tr.value}
if args.model_output == "both": if args.model_output == "both":
labels = {"client": client_tr.value, "server": server_tr} labels = {"client": client_tr.value, "server": server_tr}

View File

@ -46,7 +46,10 @@ def get_models_by_params(params: dict):
long = networks.get_new_model2(0.25, flow_features, hidden_embedding, window_size, domain_length, long = networks.get_new_model2(0.25, flow_features, hidden_embedding, window_size, domain_length,
filter_main, kernel_main, dense_dim, embedding_model, model_output) filter_main, kernel_main, dense_dim, embedding_model, model_output)
return embedding_model, final, inter, long soft = networks.get_new_soft(0.25, flow_features, hidden_embedding, window_size, domain_length,
filter_main, kernel_main, dense_dim, embedding_model, model_output)
return embedding_model, final, inter, long, soft
def get_server_model_by_params(params: dict): def get_server_model_by_params(params: dict):

View File

@ -135,3 +135,49 @@ def get_new_model2(dropout, flow_features, domain_features, window_size, domain_
out_client = Dense(1, activation='sigmoid', name="client")(y) out_client = Dense(1, activation='sigmoid', name="client")(y)
return Model(ipt_domains, ipt_flows, out_client, out_server) return Model(ipt_domains, ipt_flows, out_client, out_server)
import keras.backend as K
def get_new_soft(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both") -> Model:
def dist_reg(distant_layer):
def dist_reg_h(weights):
print("REG FUNCTION")
print(weights)
print(distant_layer)
return 0.01 * K.sum(K.abs(weights - distant_layer))
return dist_reg_h
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
y = conv_server = Conv1D(cnn_dims,
kernel_size,
activation='relu', name="conv_server")(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y)
y = dense_server = Dense(dense_dim,
activation="relu",
name="dense_server")(y)
out_server = Dense(1, activation="sigmoid", name="server")(y)
# CNN processing a small slides of flow windows
y = Conv1D(cnn_dims,
kernel_size,
activation='relu', name="conv_client")(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(dropout)(y)
y = Dense(dense_dim,
activation='relu',
name="dense_client")(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
# model = KerasModel(inputs=(ipt_domains, ipt_flows), outputs=(out_client, out_server))
return Model(ipt_domains, ipt_flows, out_client, out_server)