separating logical sections into dataset, models and main.
continued initial refactoring
This commit is contained in:
parent
be273d9247
commit
bbd63fd1da
3
.gitignore
vendored
3
.gitignore
vendored
@ -97,3 +97,6 @@ ENV/
|
||||
|
||||
# data
|
||||
*.tif
|
||||
*.joblib
|
||||
*.csv
|
||||
*.csv.gz
|
@ -1,12 +1,8 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import string
|
||||
|
||||
import keras
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from keras.layers import Dense, Dropout, Conv1D, GlobalMaxPooling1D, Reshape, Embedding, Input, Activation
|
||||
from keras.models import Model
|
||||
from keras.utils import np_utils
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
@ -21,18 +17,6 @@ def get_character_dict():
|
||||
enumerate(string.ascii_lowercase + string.punctuation))
|
||||
|
||||
|
||||
def get_cnn(vocabSize, embeddingSize, input_length, filters, kernel_size,
|
||||
hidden_dims, drop_out):
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocabSize, output_dim=embeddingSize)(y)
|
||||
y = Conv1D(filters, kernel_size, activation='relu')(y)
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dense(hidden_dims)(y)
|
||||
y = Dropout(drop_out)(y)
|
||||
y = Activation('relu')(y)
|
||||
return Model(x, y)
|
||||
|
||||
|
||||
def get_user_chunks(dataFrame, windowSize=10, overlapping=False,
|
||||
maxLengthInSeconds=300):
|
||||
# print('maxLength: ' + str(maxLengthInSeconds))
|
||||
@ -102,10 +86,8 @@ def getCiscoFeatures(curDataLine, urlSIPDict):
|
||||
numCiscoFeatures = 30
|
||||
try:
|
||||
ciscoFeatures = urlSIPDict[str(curDataLine['domain']) + str(curDataLine['server_ip'])]
|
||||
# print('cisco features: ' + str(ciscoFeatures))
|
||||
# log transform
|
||||
ciscoFeatures = np.log1p(ciscoFeatures).astype(float)
|
||||
# print('log transformed: ' + str(ciscoFeatures))
|
||||
return ciscoFeatures.ravel()
|
||||
except:
|
||||
return np.zeros([numCiscoFeatures, ]).ravel()
|
||||
@ -117,7 +99,7 @@ def create_dataset_from_flows(user_flow_df, char_dict, maxLen, threshold=3, wind
|
||||
print("get chunks from user data frames")
|
||||
for i, user_flow in enumerate(get_flow_per_user(user_flow_df)):
|
||||
(domainListsTmp, dfListsTmp) = get_user_chunks(user_flow, windowSize=windowSize,
|
||||
overlapping=False, maxLengthInSeconds=maxLengthInSeconds)
|
||||
overlapping=False, maxLengthInSeconds=-1)
|
||||
domainLists += domainListsTmp
|
||||
dfLists += dfListsTmp
|
||||
if i >= 10:
|
||||
@ -193,90 +175,3 @@ def get_flow_per_user(df):
|
||||
users = df['user_hash'].unique().tolist()
|
||||
for user in users:
|
||||
yield df.loc[df.user_hash == user]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# parameter
|
||||
innerCNNFilters = 512
|
||||
innerCNNKernelSize = 2
|
||||
cnnDropout = 0.5
|
||||
cnnHiddenDims = 1024
|
||||
domainFeatures = 512
|
||||
flowFeatures = 3
|
||||
numCiscoFeatures = 30
|
||||
windowSize = 10
|
||||
maxLen = 40
|
||||
embeddingSize = 100
|
||||
kernel_size = 2
|
||||
drop_out = 0.5
|
||||
filters = 2
|
||||
hidden_dims = 100
|
||||
vocabSize = 40
|
||||
threshold = 3
|
||||
minFlowsPerUser = 10
|
||||
numEpochs = 100
|
||||
maxLengthInSeconds = -1
|
||||
timesNeg = -1
|
||||
|
||||
char_dict = get_character_dict()
|
||||
user_flow_df = get_user_flow_data()
|
||||
|
||||
print("create training dataset")
|
||||
(X_tr, y_tr, hits_tr, names_tr) = create_dataset_from_flows(
|
||||
user_flow_df, char_dict,
|
||||
maxLen=maxLen, threshold=threshold, windowSize=windowSize)
|
||||
|
||||
pos_idx = np.where(y_tr == 1.0)[0]
|
||||
neg_idx = np.where(y_tr == 0.0)[0]
|
||||
|
||||
use_idx = np.concatenate((pos_idx, neg_idx))
|
||||
|
||||
y_tr = y_tr[use_idx]
|
||||
# hits_tr = hits_tr[use_idx]
|
||||
# names_tr = names_tr[use_idx]
|
||||
for i in range(len(X_tr)):
|
||||
X_tr[i] = X_tr[i][use_idx]
|
||||
|
||||
# TODO: WTF? I don't get it...
|
||||
sharedCNNFun = get_cnn(len(char_dict) + 1, embeddingSize, maxLen,
|
||||
domainFeatures, kernel_size, domainFeatures, 0.5)
|
||||
|
||||
inputList = []
|
||||
encodedList = []
|
||||
numFeatures = flowFeatures
|
||||
for i in range(windowSize):
|
||||
inputList.append(Input(shape=(maxLen,)))
|
||||
encodedList.append(sharedCNNFun(inputList[-1])) # add shared domain model
|
||||
inputList.append(Input(shape=(numFeatures,)))
|
||||
|
||||
merge_layer_input = []
|
||||
for i in range(windowSize):
|
||||
merge_layer_input.append(encodedList[i])
|
||||
merge_layer_input.append(inputList[(2 * i) + 1])
|
||||
|
||||
# We can then concatenate the two vectors:
|
||||
merged_vector = keras.layers.concatenate(merge_layer_input, axis=-1)
|
||||
reshape = Reshape((windowSize, domainFeatures + numFeatures))(merged_vector)
|
||||
# add second cnn
|
||||
cnn = Conv1D(filters,
|
||||
kernel_size,
|
||||
activation='relu',
|
||||
input_shape=(windowSize, domainFeatures + numFeatures))(reshape)
|
||||
# we use max pooling:
|
||||
maxPool = GlobalMaxPooling1D()(cnn)
|
||||
cnnDropout = Dropout(cnnDropout)(maxPool)
|
||||
cnnDense = Dense(cnnHiddenDims, activation='relu')(cnnDropout)
|
||||
cnnOutput = Dense(2, activation='softmax')(cnnDense)
|
||||
|
||||
# We define a trainable model linking the
|
||||
# tweet inputs to the predictions
|
||||
model = Model(inputs=inputList, outputs=cnnOutput)
|
||||
model.compile(optimizer='adam',
|
||||
loss='binary_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
|
||||
epochNumber = 0
|
||||
trainLabel = np_utils.to_categorical(y_tr, 2)
|
||||
model.fit(x=X_tr, y=trainLabel, batch_size=128,
|
||||
epochs=epochNumber + 1, shuffle=True, initial_epoch=epochNumber) # ,
|
||||
# validation_data=(testData,testLabel))
|
68
main.py
Normal file
68
main.py
Normal file
@ -0,0 +1,68 @@
|
||||
import numpy as np
|
||||
from keras.utils import np_utils
|
||||
|
||||
import dataset
|
||||
import models
|
||||
|
||||
|
||||
def main():
|
||||
# parameter
|
||||
innerCNNFilters = 512
|
||||
innerCNNKernelSize = 2
|
||||
cnnDropout = 0.5
|
||||
cnnHiddenDims = 1024
|
||||
domainFeatures = 512
|
||||
flowFeatures = 3
|
||||
numCiscoFeatures = 30
|
||||
windowSize = 10
|
||||
maxLen = 40
|
||||
embeddingSize = 100
|
||||
kernel_size = 2
|
||||
drop_out = 0.5
|
||||
filters = 2
|
||||
hidden_dims = 100
|
||||
vocabSize = 40
|
||||
threshold = 3
|
||||
minFlowsPerUser = 10
|
||||
numEpochs = 100
|
||||
timesNeg = -1
|
||||
|
||||
char_dict = dataset.get_character_dict()
|
||||
user_flow_df = dataset.get_user_flow_data()
|
||||
|
||||
print("create training dataset")
|
||||
(X_tr, y_tr, hits_tr, names_tr) = dataset.create_dataset_from_flows(
|
||||
user_flow_df, char_dict,
|
||||
maxLen=maxLen, threshold=threshold, windowSize=windowSize)
|
||||
|
||||
pos_idx = np.where(y_tr == 1.0)[0]
|
||||
neg_idx = np.where(y_tr == 0.0)[0]
|
||||
|
||||
use_idx = np.concatenate((pos_idx, neg_idx))
|
||||
|
||||
y_tr = y_tr[use_idx]
|
||||
# hits_tr = hits_tr[use_idx]
|
||||
# names_tr = names_tr[use_idx]
|
||||
for i in range(len(X_tr)):
|
||||
X_tr[i] = X_tr[i][use_idx]
|
||||
|
||||
# TODO: WTF? I don't get it...
|
||||
shared_cnn = models.get_shared_cnn(len(char_dict) + 1, embeddingSize, maxLen,
|
||||
domainFeatures, kernel_size, domainFeatures, 0.5)
|
||||
|
||||
model = models.get_top_cnn(shared_cnn, flowFeatures, maxLen, windowSize, domainFeatures, filters, kernel_size,
|
||||
cnnHiddenDims, cnnDropout)
|
||||
|
||||
model.compile(optimizer='adam',
|
||||
loss='binary_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
|
||||
epochNumber = 0
|
||||
y_tr = np_utils.to_categorical(y_tr, 2)
|
||||
model.fit(x=X_tr, y=y_tr, batch_size=128,
|
||||
epochs=epochNumber + 1, shuffle=True, initial_epoch=epochNumber) # ,
|
||||
# validation_data=(testData,testLabel))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
53
models.py
Normal file
53
models.py
Normal file
@ -0,0 +1,53 @@
|
||||
import keras
|
||||
from keras.engine import Input, Model
|
||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, Reshape
|
||||
|
||||
|
||||
def get_shared_cnn(vocabSize, embeddingSize, input_length, filters, kernel_size,
|
||||
hidden_dims, drop_out):
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocabSize, output_dim=embeddingSize)(y)
|
||||
y = Conv1D(filters, kernel_size, activation='relu')(y)
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dense(hidden_dims)(y)
|
||||
y = Dropout(drop_out)(y)
|
||||
y = Activation('relu')(y)
|
||||
return Model(x, y)
|
||||
|
||||
|
||||
def get_full_model(vocabSize, embeddingSize, maxLen, domainFeatures, flowFeatures,
|
||||
filters, h1, h2, dropout, dense):
|
||||
pass
|
||||
|
||||
|
||||
def get_top_cnn(cnn, numFeatures, maxLen, windowSize, domainFeatures, filters, kernel_size, cnnHiddenDims, cnnDropout):
|
||||
inputList = []
|
||||
encodedList = []
|
||||
# TODO: ???
|
||||
for i in range(windowSize):
|
||||
inputList.append(Input(shape=(maxLen,)))
|
||||
encodedList.append(cnn(inputList[-1])) # add shared domain model
|
||||
inputList.append(Input(shape=(numFeatures,)))
|
||||
# TODO: ???
|
||||
merge_layer_input = []
|
||||
for i in range(windowSize):
|
||||
merge_layer_input.append(encodedList[i])
|
||||
merge_layer_input.append(inputList[(2 * i) + 1])
|
||||
# We can then concatenate the two vectors:
|
||||
merged_vector = keras.layers.concatenate(merge_layer_input, axis=-1)
|
||||
reshape = Reshape((windowSize, domainFeatures + numFeatures))(merged_vector)
|
||||
# add second cnn
|
||||
cnn = Conv1D(filters,
|
||||
kernel_size,
|
||||
activation='relu',
|
||||
input_shape=(windowSize, domainFeatures + numFeatures))(reshape)
|
||||
# we use max pooling:
|
||||
maxPool = GlobalMaxPooling1D()(cnn)
|
||||
cnnDropout = Dropout(cnnDropout)(maxPool)
|
||||
cnnDense = Dense(cnnHiddenDims, activation='relu')(cnnDropout)
|
||||
cnnOutput = Dense(2, activation='softmax')(cnnDense)
|
||||
|
||||
# We define a trainable model linking the
|
||||
# tweet inputs to the predictions
|
||||
model = Model(inputs=inputList, outputs=cnnOutput)
|
||||
return model
|
6
scripts/make_csv_dataset.py
Normal file
6
scripts/make_csv_dataset.py
Normal file
@ -0,0 +1,6 @@
|
||||
#!/usr/bin/python2
|
||||
|
||||
import joblib
|
||||
|
||||
datafile = joblib.load("/mnt/projekte/pmlcluster/cisco/trainData/multipleTaskLearning/currentData.joblib")
|
||||
user_flows = datafile["data"]
|
Loading…
Reference in New Issue
Block a user