added pauls extensions for new predictions
This commit is contained in:
parent
9768f1546b
commit
d19036a611
86
dataset.py
86
dataset.py
@ -13,7 +13,6 @@ def get_character_dict():
|
|||||||
|
|
||||||
def get_user_chunks(dataFrame, windowSize=10, overlapping=False,
|
def get_user_chunks(dataFrame, windowSize=10, overlapping=False,
|
||||||
maxLengthInSeconds=300):
|
maxLengthInSeconds=300):
|
||||||
# print('maxLength: ' + str(maxLengthInSeconds))
|
|
||||||
maxMilliSeconds = maxLengthInSeconds * 1000
|
maxMilliSeconds = maxLengthInSeconds * 1000
|
||||||
outDomainLists = []
|
outDomainLists = []
|
||||||
outDFFrames = []
|
outDFFrames = []
|
||||||
@ -39,7 +38,6 @@ def get_user_chunks(dataFrame, windowSize=10, overlapping=False,
|
|||||||
userIDs = np.arange(len(dataFrame))
|
userIDs = np.arange(len(dataFrame))
|
||||||
for blockID in np.arange(numBlocks):
|
for blockID in np.arange(numBlocks):
|
||||||
curIDs = userIDs[blockID:blockID + windowSize]
|
curIDs = userIDs[blockID:blockID + windowSize]
|
||||||
# print(curIDs)
|
|
||||||
useData = dataFrame.iloc[curIDs]
|
useData = dataFrame.iloc[curIDs]
|
||||||
curDomains = useData['domain']
|
curDomains = useData['domain']
|
||||||
if maxLengthInSeconds != -1:
|
if maxLengthInSeconds != -1:
|
||||||
@ -64,17 +62,20 @@ def get_domain_features(domain, vocab, max_length=40):
|
|||||||
|
|
||||||
|
|
||||||
def get_flow_features(flow):
|
def get_flow_features(flow):
|
||||||
useKeys = ['duration', 'bytes_down', 'bytes_up']
|
keys = ['duration', 'bytes_down', 'bytes_up']
|
||||||
curFeature = np.zeros([len(useKeys), ])
|
features = np.zeros([len(keys), ])
|
||||||
for i, curKey in enumerate(useKeys):
|
for i, key in enumerate(keys):
|
||||||
|
# TODO: does it still works after exceptions occur -- default: zero!
|
||||||
|
# i wonder whether something brokes
|
||||||
|
# if there are exceptions regarding to inconsistent feature length
|
||||||
try:
|
try:
|
||||||
curFeature[i] = np.log1p(flow[curKey]).astype(float)
|
features[i] = np.log1p(flow[key]).astype(float)
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
return curFeature
|
return features
|
||||||
|
|
||||||
|
|
||||||
def getCiscoFeatures(curDataLine, urlSIPDict):
|
def get_cisco_features(curDataLine, urlSIPDict):
|
||||||
numCiscoFeatures = 30
|
numCiscoFeatures = 30
|
||||||
try:
|
try:
|
||||||
ciscoFeatures = urlSIPDict[str(curDataLine['domain']) + str(curDataLine['server_ip'])]
|
ciscoFeatures = urlSIPDict[str(curDataLine['domain']) + str(curDataLine['server_ip'])]
|
||||||
@ -94,20 +95,21 @@ def create_dataset_from_flows(user_flow_df, char_dict, maxLen, threshold=3, wind
|
|||||||
overlapping=True, maxLengthInSeconds=-1)
|
overlapping=True, maxLengthInSeconds=-1)
|
||||||
domainLists += domainListsTmp
|
domainLists += domainListsTmp
|
||||||
dfLists += dfListsTmp
|
dfLists += dfListsTmp
|
||||||
|
# TODO: remove later
|
||||||
if i >= 10:
|
if i >= 10:
|
||||||
break
|
break
|
||||||
|
|
||||||
print("create training dataset")
|
print("create training dataset")
|
||||||
return create_dataset_from_lists(
|
return create_dataset_from_lists(
|
||||||
domains=domainLists, dfs=dfLists, charachterDict=char_dict,
|
domains=domainLists, dfs=dfLists, vocab=char_dict,
|
||||||
maxLen=maxLen, threshold=threshold,
|
maxLen=maxLen, threshold=threshold,
|
||||||
use_cisco_features=use_cisco_features, urlSIPDIct=dict(),
|
use_cisco_features=use_cisco_features, urlSIPDIct=dict(),
|
||||||
windowSize=windowSize)
|
window_size=windowSize)
|
||||||
|
|
||||||
|
|
||||||
def create_dataset_from_lists(domains, dfs, charachterDict, maxLen, threshold=3,
|
def create_dataset_from_lists(domains, dfs, vocab, maxLen, threshold=3,
|
||||||
use_cisco_features=False, urlSIPDIct=dict(),
|
use_cisco_features=False, urlSIPDIct=dict(),
|
||||||
windowSize=10):
|
window_size=10):
|
||||||
if 'hits' in dfs[0].keys():
|
if 'hits' in dfs[0].keys():
|
||||||
hitName = 'hits'
|
hitName = 'hits'
|
||||||
elif 'virusTotalHits' in dfs[0].keys():
|
elif 'virusTotalHits' in dfs[0].keys():
|
||||||
@ -117,38 +119,46 @@ def create_dataset_from_lists(domains, dfs, charachterDict, maxLen, threshold=3,
|
|||||||
numFeatures = numFlowFeatures
|
numFeatures = numFlowFeatures
|
||||||
if use_cisco_features:
|
if use_cisco_features:
|
||||||
numFeatures += numCiscoFeatures
|
numFeatures += numCiscoFeatures
|
||||||
outputFeatures = []
|
Xs = []
|
||||||
label = []
|
ys = []
|
||||||
hits = []
|
hits = []
|
||||||
trainNames = []
|
names = []
|
||||||
for i in range(windowSize):
|
servers = []
|
||||||
outputFeatures.append(np.zeros([len(domains), maxLen]))
|
trusted_hits = []
|
||||||
outputFeatures.append(np.zeros([len(domains), numFeatures]))
|
for i in range(window_size):
|
||||||
|
Xs.append(np.zeros([len(domains), maxLen]))
|
||||||
|
Xs.append(np.zeros([len(domains), numFeatures]))
|
||||||
|
|
||||||
for i in tqdm(np.arange(len(domains)), miniters=10):
|
for i in tqdm(np.arange(len(domains)), miniters=10):
|
||||||
curCounter = 0
|
ctr = 0
|
||||||
# print('len domainList: ' + str(len(domainLists[i])))
|
for j in range(np.min([window_size, len(domains[i])])):
|
||||||
# print('len df: ' + str(len(dfLists[i])))
|
Xs[ctr][i, :] = get_domain_features(domains[i][j], vocab, maxLen)
|
||||||
for j in range(np.min([windowSize, len(domains[i])])):
|
ctr += 1
|
||||||
outputFeatures[curCounter][i, :] = get_domain_features(domains[i][j], charachterDict, maxLen)
|
|
||||||
curCounter += 1
|
|
||||||
if use_cisco_features:
|
if use_cisco_features:
|
||||||
outputFeatures[curCounter][i, 0:numFlowFeatures] = get_flow_features(dfs[i].iloc[j])
|
Xs[ctr][i, 0:numFlowFeatures] = get_flow_features(dfs[i].iloc[j])
|
||||||
outputFeatures[curCounter][i, numFlowFeatures:] = get_cisco_features(dfs[i].iloc[j], urlSIPDIct)
|
Xs[ctr][i, numFlowFeatures:] = get_cisco_features(dfs[i].iloc[j], urlSIPDIct)
|
||||||
else:
|
else:
|
||||||
outputFeatures[curCounter][i, :] = get_flow_features(dfs[i].iloc[j])
|
Xs[ctr][i, :] = get_flow_features(dfs[i].iloc[j])
|
||||||
curCounter += 1
|
ctr += 1
|
||||||
curLabel = 0.0
|
|
||||||
if np.max(dfs[i][hitName]) >= threshold:
|
ys.append(discretize_label(dfs[i][hitName], threshold))
|
||||||
curLabel = 1.0
|
|
||||||
elif np.max(dfs[i][hitName]) == -1:
|
|
||||||
curLabel = -1.0
|
|
||||||
elif np.max(dfs[i][hitName]) > 0 and np.max(dfs[i][hitName]) < threshold:
|
|
||||||
curLabel = -2.0
|
|
||||||
label.append(curLabel)
|
|
||||||
hits.append(np.max(dfs[i][hitName]))
|
hits.append(np.max(dfs[i][hitName]))
|
||||||
trainNames.append(np.unique(dfs[i]['user_hash']))
|
names.append(np.unique(dfs[i]['user_hash']))
|
||||||
return (outputFeatures, np.array(label), np.array(hits), np.array(trainNames))
|
servers.append(np.max(dfs[i]['serverLabel']))
|
||||||
|
trusted_hits.append(np.max(dfs[i]['trustedHits']))
|
||||||
|
return Xs, np.array(ys), np.array(hits), np.array(names), np.array(servers), np.array(trusted_hits)
|
||||||
|
|
||||||
|
|
||||||
|
def discretize_label(values, threshold):
|
||||||
|
maxVal = np.max(values)
|
||||||
|
if maxVal >= threshold:
|
||||||
|
return 1.0
|
||||||
|
elif maxVal == -1:
|
||||||
|
return -1.0
|
||||||
|
elif 0 < maxVal < threshold:
|
||||||
|
return -2.0
|
||||||
|
else:
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
|
||||||
def get_user_flow_data():
|
def get_user_flow_data():
|
||||||
|
15
main.py
15
main.py
@ -37,20 +37,21 @@ def main():
|
|||||||
user_flow_df = dataset.get_user_flow_data()
|
user_flow_df = dataset.get_user_flow_data()
|
||||||
|
|
||||||
print("create training dataset")
|
print("create training dataset")
|
||||||
(X_tr, y_tr, hits_tr, names_tr) = dataset.create_dataset_from_flows(
|
(X_tr, y_tr, hits_tr, names_tr, server_tr, trusted_hits_tr) = dataset.create_dataset_from_flows(
|
||||||
user_flow_df, char_dict,
|
user_flow_df, char_dict,
|
||||||
maxLen=maxLen, threshold=threshold, windowSize=windowSize)
|
maxLen=maxLen, threshold=threshold, windowSize=windowSize)
|
||||||
|
|
||||||
pos_idx = np.where(y_tr == 1.0)[0]
|
pos_idx = np.where(y_tr == 1.0)[0]
|
||||||
neg_idx = np.where(y_tr == 0.0)[0]
|
neg_idx = np.where(y_tr == 0.0)[0]
|
||||||
|
idx = np.concatenate((pos_idx, neg_idx))
|
||||||
|
|
||||||
use_idx = np.concatenate((pos_idx, neg_idx))
|
y_tr = y_tr[idx]
|
||||||
|
hits_tr = hits_tr[idx]
|
||||||
y_tr = y_tr[use_idx]
|
names_tr = names_tr[idx]
|
||||||
# hits_tr = hits_tr[use_idx]
|
server_tr = server_tr[idx]
|
||||||
# names_tr = names_tr[use_idx]
|
trusted_hits_tr = trusted_hits_tr[idx]
|
||||||
for i in range(len(X_tr)):
|
for i in range(len(X_tr)):
|
||||||
X_tr[i] = X_tr[i][use_idx]
|
X_tr[i] = X_tr[i][idx]
|
||||||
|
|
||||||
# TODO: WTF? I don't get it...
|
# TODO: WTF? I don't get it...
|
||||||
shared_cnn = models.get_shared_cnn(len(char_dict) + 1, embeddingSize, maxLen,
|
shared_cnn = models.get_shared_cnn(len(char_dict) + 1, embeddingSize, maxLen,
|
||||||
|
Loading…
Reference in New Issue
Block a user