move model creation back into models package

This commit is contained in:
2017-11-07 20:09:20 +01:00
parent b1f48c1895
commit e12bbda8c5
6 changed files with 67 additions and 119 deletions

View File

@@ -1,14 +1,24 @@
import keras.backend as K
from keras.models import Model
from models import deep1
from models.renes_networks import selu
from . import flat_2, pauls_networks, renes_networks
def create_model(model, output_type):
if output_type == "both":
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client, model.out_server))
elif output_type == "client":
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client,))
else:
raise Exception("unknown model output")
def get_models_by_params(params: dict):
# decomposing param section
# mainly embedding model
# network_type = params.get("type")
network_type = params.get("type")
network_depth = params.get("depth")
embedding_size = params.get("embedding")
filter_embedding = params.get("filter_embedding")
@@ -33,23 +43,40 @@ def get_models_by_params(params: dict):
elif network_depth == "deep2":
networks = renes_networks
else:
raise Exception("network not found")
embedding_model = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding,
raise ValueError("network not found")
domain_cnn = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding,
hidden_embedding, 0.5)
final = networks.get_model(0.25, flow_features, hidden_embedding, window_size, domain_length,
filter_main, kernel_main, dense_dim, embedding_model, model_output)
if network_type == "final":
model = networks.get_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output)
elif network_type in ("inter", "staggered"):
model = networks.get_new_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output)
elif network_type == "long":
model = networks.get_new_model2(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output)
elif network_type == "soft":
model = networks.get_new_soft(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output)
conv_server = model.get_layer("conv_server").trainable_weights
conv_client = model.get_layer("conv_client").trainable_weights
l1 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(conv_server, conv_client)]
model.add_loss(l1)
dense_server = model.get_layer("dense_server").trainable_weights
dense_client = model.get_layer("dense_client").trainable_weights
l2 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(dense_server, dense_client)]
model.add_loss(l2)
else:
raise ValueError("network type not found")
inter = networks.get_new_model(0.25, flow_features, hidden_embedding, window_size, domain_length,
filter_main, kernel_main, dense_dim, embedding_model, model_output)
long = networks.get_new_model2(0.25, flow_features, hidden_embedding, window_size, domain_length,
filter_main, kernel_main, dense_dim, embedding_model, model_output)
soft = networks.get_new_soft(0.25, flow_features, hidden_embedding, window_size, domain_length,
filter_main, kernel_main, dense_dim, embedding_model, model_output)
return embedding_model, final, inter, long, soft
return model
def get_server_model_by_params(params: dict):

View File

@@ -42,8 +42,8 @@ def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden
return KerasModel(x, y)
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both") -> Model:
def get_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
@@ -51,8 +51,7 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
# CNN processing a small slides of flow windows
y = Conv1D(cnn_dims,
kernel_size,
activation='relu',
input_shape=(window_size, domain_features + flow_features))(merged)
activation='relu')(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(cnnDropout)(y)
@@ -63,8 +62,8 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
return Model(ipt_domains, ipt_flows, out_client, out_server)
def get_new_model(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both") -> Model:
def get_new_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
@@ -105,8 +104,8 @@ def get_server_model(flow_features, domain_length, dense_dim, cnn):
return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server)
def get_new_model2(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both") -> Model:
def get_new_model2(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
@@ -137,19 +136,8 @@ def get_new_model2(dropout, flow_features, domain_features, window_size, domain_
return Model(ipt_domains, ipt_flows, out_client, out_server)
import keras.backend as K
def get_new_soft(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both") -> Model:
def dist_reg(distant_layer):
def dist_reg_h(weights):
print("REG FUNCTION")
print(weights)
print(distant_layer)
return 0.01 * K.sum(K.abs(weights - distant_layer))
return dist_reg_h
def get_new_soft(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
@@ -177,7 +165,5 @@ def get_new_soft(dropout, flow_features, domain_features, window_size, domain_le
name="dense_client")(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
# model = KerasModel(inputs=(ipt_domains, ipt_flows), outputs=(out_client, out_server))
return Model(ipt_domains, ipt_flows, out_client, out_server)