move model creation back into models package
This commit is contained in:
@@ -1,14 +1,24 @@
|
||||
import keras.backend as K
|
||||
from keras.models import Model
|
||||
|
||||
from models import deep1
|
||||
from models.renes_networks import selu
|
||||
from . import flat_2, pauls_networks, renes_networks
|
||||
|
||||
|
||||
def create_model(model, output_type):
|
||||
if output_type == "both":
|
||||
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client, model.out_server))
|
||||
elif output_type == "client":
|
||||
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client,))
|
||||
else:
|
||||
raise Exception("unknown model output")
|
||||
|
||||
|
||||
def get_models_by_params(params: dict):
|
||||
# decomposing param section
|
||||
# mainly embedding model
|
||||
# network_type = params.get("type")
|
||||
network_type = params.get("type")
|
||||
network_depth = params.get("depth")
|
||||
embedding_size = params.get("embedding")
|
||||
filter_embedding = params.get("filter_embedding")
|
||||
@@ -33,23 +43,40 @@ def get_models_by_params(params: dict):
|
||||
elif network_depth == "deep2":
|
||||
networks = renes_networks
|
||||
else:
|
||||
raise Exception("network not found")
|
||||
embedding_model = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding,
|
||||
raise ValueError("network not found")
|
||||
|
||||
domain_cnn = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding,
|
||||
hidden_embedding, 0.5)
|
||||
|
||||
final = networks.get_model(0.25, flow_features, hidden_embedding, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, embedding_model, model_output)
|
||||
if network_type == "final":
|
||||
model = networks.get_model(0.25, flow_features, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||
model = create_model(model, model_output)
|
||||
elif network_type in ("inter", "staggered"):
|
||||
model = networks.get_new_model(0.25, flow_features, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||
model = create_model(model, model_output)
|
||||
elif network_type == "long":
|
||||
model = networks.get_new_model2(0.25, flow_features, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||
model = create_model(model, model_output)
|
||||
elif network_type == "soft":
|
||||
model = networks.get_new_soft(0.25, flow_features, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||
model = create_model(model, model_output)
|
||||
conv_server = model.get_layer("conv_server").trainable_weights
|
||||
conv_client = model.get_layer("conv_client").trainable_weights
|
||||
l1 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(conv_server, conv_client)]
|
||||
model.add_loss(l1)
|
||||
|
||||
dense_server = model.get_layer("dense_server").trainable_weights
|
||||
dense_client = model.get_layer("dense_client").trainable_weights
|
||||
l2 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(dense_server, dense_client)]
|
||||
model.add_loss(l2)
|
||||
else:
|
||||
raise ValueError("network type not found")
|
||||
|
||||
inter = networks.get_new_model(0.25, flow_features, hidden_embedding, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, embedding_model, model_output)
|
||||
|
||||
long = networks.get_new_model2(0.25, flow_features, hidden_embedding, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, embedding_model, model_output)
|
||||
|
||||
soft = networks.get_new_soft(0.25, flow_features, hidden_embedding, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, embedding_model, model_output)
|
||||
|
||||
return embedding_model, final, inter, long, soft
|
||||
return model
|
||||
|
||||
|
||||
def get_server_model_by_params(params: dict):
|
||||
|
@@ -42,8 +42,8 @@ def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden
|
||||
return KerasModel(x, y)
|
||||
|
||||
|
||||
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim, cnn, model_output="both") -> Model:
|
||||
def get_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim, cnn) -> Model:
|
||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
@@ -51,8 +51,7 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
||||
# CNN processing a small slides of flow windows
|
||||
y = Conv1D(cnn_dims,
|
||||
kernel_size,
|
||||
activation='relu',
|
||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
||||
activation='relu')(merged)
|
||||
# remove temporal dimension by global max pooling
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(cnnDropout)(y)
|
||||
@@ -63,8 +62,8 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
||||
|
||||
|
||||
def get_new_model(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim, cnn, model_output="both") -> Model:
|
||||
def get_new_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim, cnn) -> Model:
|
||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
||||
@@ -105,8 +104,8 @@ def get_server_model(flow_features, domain_length, dense_dim, cnn):
|
||||
return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server)
|
||||
|
||||
|
||||
def get_new_model2(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim, cnn, model_output="both") -> Model:
|
||||
def get_new_model2(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim, cnn) -> Model:
|
||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
||||
@@ -137,19 +136,8 @@ def get_new_model2(dropout, flow_features, domain_features, window_size, domain_
|
||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
||||
|
||||
|
||||
import keras.backend as K
|
||||
|
||||
|
||||
def get_new_soft(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim, cnn, model_output="both") -> Model:
|
||||
def dist_reg(distant_layer):
|
||||
def dist_reg_h(weights):
|
||||
print("REG FUNCTION")
|
||||
print(weights)
|
||||
print(distant_layer)
|
||||
return 0.01 * K.sum(K.abs(weights - distant_layer))
|
||||
|
||||
return dist_reg_h
|
||||
def get_new_soft(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||
dense_dim, cnn) -> Model:
|
||||
|
||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
@@ -177,7 +165,5 @@ def get_new_soft(dropout, flow_features, domain_features, window_size, domain_le
|
||||
name="dense_client")(y)
|
||||
|
||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
||||
# model = KerasModel(inputs=(ipt_domains, ipt_flows), outputs=(out_client, out_server))
|
||||
|
||||
|
||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
||||
|
Reference in New Issue
Block a user