move model creation back into models package
This commit is contained in:
@@ -1,14 +1,24 @@
|
||||
import keras.backend as K
|
||||
from keras.models import Model
|
||||
|
||||
from models import deep1
|
||||
from models.renes_networks import selu
|
||||
from . import flat_2, pauls_networks, renes_networks
|
||||
|
||||
|
||||
def create_model(model, output_type):
|
||||
if output_type == "both":
|
||||
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client, model.out_server))
|
||||
elif output_type == "client":
|
||||
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client,))
|
||||
else:
|
||||
raise Exception("unknown model output")
|
||||
|
||||
|
||||
def get_models_by_params(params: dict):
|
||||
# decomposing param section
|
||||
# mainly embedding model
|
||||
# network_type = params.get("type")
|
||||
network_type = params.get("type")
|
||||
network_depth = params.get("depth")
|
||||
embedding_size = params.get("embedding")
|
||||
filter_embedding = params.get("filter_embedding")
|
||||
@@ -33,23 +43,40 @@ def get_models_by_params(params: dict):
|
||||
elif network_depth == "deep2":
|
||||
networks = renes_networks
|
||||
else:
|
||||
raise Exception("network not found")
|
||||
embedding_model = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding,
|
||||
raise ValueError("network not found")
|
||||
|
||||
domain_cnn = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding,
|
||||
hidden_embedding, 0.5)
|
||||
|
||||
final = networks.get_model(0.25, flow_features, hidden_embedding, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, embedding_model, model_output)
|
||||
if network_type == "final":
|
||||
model = networks.get_model(0.25, flow_features, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||
model = create_model(model, model_output)
|
||||
elif network_type in ("inter", "staggered"):
|
||||
model = networks.get_new_model(0.25, flow_features, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||
model = create_model(model, model_output)
|
||||
elif network_type == "long":
|
||||
model = networks.get_new_model2(0.25, flow_features, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||
model = create_model(model, model_output)
|
||||
elif network_type == "soft":
|
||||
model = networks.get_new_soft(0.25, flow_features, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||
model = create_model(model, model_output)
|
||||
conv_server = model.get_layer("conv_server").trainable_weights
|
||||
conv_client = model.get_layer("conv_client").trainable_weights
|
||||
l1 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(conv_server, conv_client)]
|
||||
model.add_loss(l1)
|
||||
|
||||
dense_server = model.get_layer("dense_server").trainable_weights
|
||||
dense_client = model.get_layer("dense_client").trainable_weights
|
||||
l2 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(dense_server, dense_client)]
|
||||
model.add_loss(l2)
|
||||
else:
|
||||
raise ValueError("network type not found")
|
||||
|
||||
inter = networks.get_new_model(0.25, flow_features, hidden_embedding, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, embedding_model, model_output)
|
||||
|
||||
long = networks.get_new_model2(0.25, flow_features, hidden_embedding, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, embedding_model, model_output)
|
||||
|
||||
soft = networks.get_new_soft(0.25, flow_features, hidden_embedding, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, embedding_model, model_output)
|
||||
|
||||
return embedding_model, final, inter, long, soft
|
||||
return model
|
||||
|
||||
|
||||
def get_server_model_by_params(params: dict):
|
||||
|
Reference in New Issue
Block a user