move model creation back into models package
This commit is contained in:
parent
b1f48c1895
commit
e12bbda8c5
37
Makefile
37
Makefile
@ -1,39 +1,28 @@
|
|||||||
run:
|
run:
|
||||||
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_1 --epochs 2 --depth flat1 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client --epochs 2 --depth flat1 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type final --model_output both
|
--dense_embd 16 --domain_embd 8 --batch 64 --type final --model_output client
|
||||||
|
|
||||||
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_2 --epochs 2 --depth flat1 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_final --epochs 2 --depth flat1 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type inter --model_output both
|
--dense_embd 16 --domain_embd 8 --batch 64 --type final --model_output both
|
||||||
|
|
||||||
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_3 --epochs 2 --depth deep1 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_inter --epochs 2 --depth flat1 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type final --model_output both
|
--dense_embd 16 --domain_embd 8 --batch 64 --type inter --model_output both
|
||||||
|
|
||||||
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_4 --epochs 2 --depth deep1 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_soft --epochs 2 --depth flat1 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type inter --model_output both
|
--dense_embd 16 --domain_embd 8 --batch 64 --type soft --model_output both
|
||||||
|
|
||||||
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_5 --epochs 2 --depth flat2 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_long --epochs 2 --depth flat1 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type staggered --model_output both
|
--dense_embd 16 --domain_embd 8 --batch 64 --type long --model_output both
|
||||||
|
|
||||||
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client_1 --epochs 2 --depth flat2 \
|
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_staggered --epochs 2 --depth flat1 \
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type final --model_output client
|
--dense_embd 16 --domain_embd 8 --batch 64 --type staggered --model_output both
|
||||||
|
|
||||||
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client_2 --epochs 2 --depth flat2 \
|
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --type inter --model_output client
|
|
||||||
|
|
||||||
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client_3 --epochs 2 --depth deep1 \
|
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --type final --model_output client
|
|
||||||
|
|
||||||
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client_4 --epochs 2 --depth deep1 \
|
|
||||||
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
|
|
||||||
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type inter --model_output client
|
|
||||||
|
|
||||||
test:
|
test:
|
||||||
python3 main.py --mode test --batch 128 --models results/test/test_both_* --data data/rk_mini.csv.gz --model_output both
|
python3 main.py --mode test --batch 128 --models results/test/test_both_* --data data/rk_mini.csv.gz --model_output both
|
||||||
|
24
hyperband.py
24
hyperband.py
@ -8,12 +8,10 @@ from random import random as rng
|
|||||||
from time import ctime, time
|
from time import ctime, time
|
||||||
|
|
||||||
import joblib
|
import joblib
|
||||||
import keras.backend as K
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from keras.callbacks import EarlyStopping
|
from keras.callbacks import EarlyStopping
|
||||||
|
|
||||||
import models
|
import models
|
||||||
from main import create_model
|
|
||||||
|
|
||||||
logger = logging.getLogger('cisco_logger')
|
logger = logging.getLogger('cisco_logger')
|
||||||
|
|
||||||
@ -48,27 +46,7 @@ class Hyperband:
|
|||||||
|
|
||||||
def try_params(self, n_iterations, params):
|
def try_params(self, n_iterations, params):
|
||||||
n_iterations = int(round(n_iterations))
|
n_iterations = int(round(n_iterations))
|
||||||
embedding, model, new_model, long_model, soft_model = models.get_models_by_params(params)
|
model = models.get_models_by_params(params)
|
||||||
|
|
||||||
if params["type"] in ("inter", "staggered"):
|
|
||||||
model = new_model
|
|
||||||
if params["type"] == "long":
|
|
||||||
model = long_model
|
|
||||||
if params["type"] == "soft":
|
|
||||||
model = soft_model
|
|
||||||
|
|
||||||
model = create_model(model, params["model_output"])
|
|
||||||
|
|
||||||
if params["type"] == "soft":
|
|
||||||
conv_server = model.get_layer("conv_server").trainable_weights
|
|
||||||
conv_client = model.get_layer("conv_client").trainable_weights
|
|
||||||
l1 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(conv_server, conv_client)]
|
|
||||||
model.add_loss(l1)
|
|
||||||
|
|
||||||
dense_server = model.get_layer("dense_server").trainable_weights
|
|
||||||
dense_client = model.get_layer("dense_client").trainable_weights
|
|
||||||
l2 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(dense_server, dense_client)]
|
|
||||||
model.add_loss(l2)
|
|
||||||
|
|
||||||
callbacks = [EarlyStopping(monitor='val_loss',
|
callbacks = [EarlyStopping(monitor='val_loss',
|
||||||
patience=5,
|
patience=5,
|
||||||
|
34
main.py
34
main.py
@ -3,12 +3,10 @@ import operator
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
import joblib
|
import joblib
|
||||||
import keras.backend as K
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from keras.callbacks import CSVLogger, EarlyStopping, ModelCheckpoint
|
from keras.callbacks import CSVLogger, EarlyStopping, ModelCheckpoint
|
||||||
from keras.models import Model
|
|
||||||
from sklearn.metrics import confusion_matrix
|
from sklearn.metrics import confusion_matrix
|
||||||
|
|
||||||
import arguments
|
import arguments
|
||||||
@ -124,15 +122,6 @@ def get_param_dist(dist_size="small"):
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
def create_model(model, output_type):
|
|
||||||
if output_type == "both":
|
|
||||||
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client, model.out_server))
|
|
||||||
elif output_type == "client":
|
|
||||||
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client,))
|
|
||||||
else:
|
|
||||||
raise Exception("unknown model output")
|
|
||||||
|
|
||||||
|
|
||||||
def shuffle_training_data(domain, flow, client, server):
|
def shuffle_training_data(domain, flow, client, server):
|
||||||
idx = np.random.permutation(len(domain))
|
idx = np.random.permutation(len(domain))
|
||||||
domain = domain[idx]
|
domain = domain[idx]
|
||||||
@ -247,27 +236,7 @@ def main_train(param=None):
|
|||||||
custom_sample_weights = None
|
custom_sample_weights = None
|
||||||
|
|
||||||
logger.info(f"Generator model with params: {param}")
|
logger.info(f"Generator model with params: {param}")
|
||||||
embedding, model, new_model, long_model, soft_model = models.get_models_by_params(param)
|
model = models.get_models_by_params(param)
|
||||||
|
|
||||||
if args.model_type in ("inter", "staggered"):
|
|
||||||
model = new_model
|
|
||||||
if args.model_type == "long":
|
|
||||||
model = long_model
|
|
||||||
if args.model_type == "soft":
|
|
||||||
model = soft_model
|
|
||||||
|
|
||||||
model = create_model(model, args.model_output)
|
|
||||||
|
|
||||||
if args.model_type == "soft":
|
|
||||||
conv_server = model.get_layer("conv_server").trainable_weights
|
|
||||||
conv_client = model.get_layer("conv_client").trainable_weights
|
|
||||||
l1 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(conv_server, conv_client)]
|
|
||||||
model.add_loss(l1)
|
|
||||||
|
|
||||||
dense_server = model.get_layer("dense_server").trainable_weights
|
|
||||||
dense_client = model.get_layer("dense_client").trainable_weights
|
|
||||||
l2 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(dense_server, dense_client)]
|
|
||||||
model.add_loss(l2)
|
|
||||||
|
|
||||||
features = {"ipt_domains": domain_tr.value, "ipt_flows": flow_tr.value}
|
features = {"ipt_domains": domain_tr.value, "ipt_flows": flow_tr.value}
|
||||||
if args.model_output == "both":
|
if args.model_output == "both":
|
||||||
@ -307,7 +276,6 @@ def main_train(param=None):
|
|||||||
loss_weights = {"client": 1.0, "server": 0.0}
|
loss_weights = {"client": 1.0, "server": 0.0}
|
||||||
|
|
||||||
logger.info("compile and train model")
|
logger.info("compile and train model")
|
||||||
embedding.summary()
|
|
||||||
logger.info(model.get_config())
|
logger.info(model.get_config())
|
||||||
model.compile(optimizer='adam',
|
model.compile(optimizer='adam',
|
||||||
loss='binary_crossentropy',
|
loss='binary_crossentropy',
|
||||||
|
@ -1,14 +1,24 @@
|
|||||||
import keras.backend as K
|
import keras.backend as K
|
||||||
|
from keras.models import Model
|
||||||
|
|
||||||
from models import deep1
|
from models import deep1
|
||||||
from models.renes_networks import selu
|
from models.renes_networks import selu
|
||||||
from . import flat_2, pauls_networks, renes_networks
|
from . import flat_2, pauls_networks, renes_networks
|
||||||
|
|
||||||
|
|
||||||
|
def create_model(model, output_type):
|
||||||
|
if output_type == "both":
|
||||||
|
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client, model.out_server))
|
||||||
|
elif output_type == "client":
|
||||||
|
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client,))
|
||||||
|
else:
|
||||||
|
raise Exception("unknown model output")
|
||||||
|
|
||||||
|
|
||||||
def get_models_by_params(params: dict):
|
def get_models_by_params(params: dict):
|
||||||
# decomposing param section
|
# decomposing param section
|
||||||
# mainly embedding model
|
# mainly embedding model
|
||||||
# network_type = params.get("type")
|
network_type = params.get("type")
|
||||||
network_depth = params.get("depth")
|
network_depth = params.get("depth")
|
||||||
embedding_size = params.get("embedding")
|
embedding_size = params.get("embedding")
|
||||||
filter_embedding = params.get("filter_embedding")
|
filter_embedding = params.get("filter_embedding")
|
||||||
@ -33,23 +43,40 @@ def get_models_by_params(params: dict):
|
|||||||
elif network_depth == "deep2":
|
elif network_depth == "deep2":
|
||||||
networks = renes_networks
|
networks = renes_networks
|
||||||
else:
|
else:
|
||||||
raise Exception("network not found")
|
raise ValueError("network not found")
|
||||||
embedding_model = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding,
|
|
||||||
|
domain_cnn = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding,
|
||||||
hidden_embedding, 0.5)
|
hidden_embedding, 0.5)
|
||||||
|
|
||||||
final = networks.get_model(0.25, flow_features, hidden_embedding, window_size, domain_length,
|
if network_type == "final":
|
||||||
filter_main, kernel_main, dense_dim, embedding_model, model_output)
|
model = networks.get_model(0.25, flow_features, window_size, domain_length,
|
||||||
|
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||||
|
model = create_model(model, model_output)
|
||||||
|
elif network_type in ("inter", "staggered"):
|
||||||
|
model = networks.get_new_model(0.25, flow_features, window_size, domain_length,
|
||||||
|
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||||
|
model = create_model(model, model_output)
|
||||||
|
elif network_type == "long":
|
||||||
|
model = networks.get_new_model2(0.25, flow_features, window_size, domain_length,
|
||||||
|
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||||
|
model = create_model(model, model_output)
|
||||||
|
elif network_type == "soft":
|
||||||
|
model = networks.get_new_soft(0.25, flow_features, window_size, domain_length,
|
||||||
|
filter_main, kernel_main, dense_dim, domain_cnn)
|
||||||
|
model = create_model(model, model_output)
|
||||||
|
conv_server = model.get_layer("conv_server").trainable_weights
|
||||||
|
conv_client = model.get_layer("conv_client").trainable_weights
|
||||||
|
l1 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(conv_server, conv_client)]
|
||||||
|
model.add_loss(l1)
|
||||||
|
|
||||||
|
dense_server = model.get_layer("dense_server").trainable_weights
|
||||||
|
dense_client = model.get_layer("dense_client").trainable_weights
|
||||||
|
l2 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(dense_server, dense_client)]
|
||||||
|
model.add_loss(l2)
|
||||||
|
else:
|
||||||
|
raise ValueError("network type not found")
|
||||||
|
|
||||||
inter = networks.get_new_model(0.25, flow_features, hidden_embedding, window_size, domain_length,
|
return model
|
||||||
filter_main, kernel_main, dense_dim, embedding_model, model_output)
|
|
||||||
|
|
||||||
long = networks.get_new_model2(0.25, flow_features, hidden_embedding, window_size, domain_length,
|
|
||||||
filter_main, kernel_main, dense_dim, embedding_model, model_output)
|
|
||||||
|
|
||||||
soft = networks.get_new_soft(0.25, flow_features, hidden_embedding, window_size, domain_length,
|
|
||||||
filter_main, kernel_main, dense_dim, embedding_model, model_output)
|
|
||||||
|
|
||||||
return embedding_model, final, inter, long, soft
|
|
||||||
|
|
||||||
|
|
||||||
def get_server_model_by_params(params: dict):
|
def get_server_model_by_params(params: dict):
|
||||||
|
@ -42,8 +42,8 @@ def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden
|
|||||||
return KerasModel(x, y)
|
return KerasModel(x, y)
|
||||||
|
|
||||||
|
|
||||||
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
def get_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||||
dense_dim, cnn, model_output="both") -> Model:
|
dense_dim, cnn) -> Model:
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
@ -51,8 +51,7 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
|||||||
# CNN processing a small slides of flow windows
|
# CNN processing a small slides of flow windows
|
||||||
y = Conv1D(cnn_dims,
|
y = Conv1D(cnn_dims,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
activation='relu',
|
activation='relu')(merged)
|
||||||
input_shape=(window_size, domain_features + flow_features))(merged)
|
|
||||||
# remove temporal dimension by global max pooling
|
# remove temporal dimension by global max pooling
|
||||||
y = GlobalMaxPooling1D()(y)
|
y = GlobalMaxPooling1D()(y)
|
||||||
y = Dropout(cnnDropout)(y)
|
y = Dropout(cnnDropout)(y)
|
||||||
@ -63,8 +62,8 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
|||||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
||||||
|
|
||||||
|
|
||||||
def get_new_model(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
def get_new_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||||
dense_dim, cnn, model_output="both") -> Model:
|
dense_dim, cnn) -> Model:
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
||||||
@ -105,8 +104,8 @@ def get_server_model(flow_features, domain_length, dense_dim, cnn):
|
|||||||
return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server)
|
return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server)
|
||||||
|
|
||||||
|
|
||||||
def get_new_model2(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
def get_new_model2(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||||
dense_dim, cnn, model_output="both") -> Model:
|
dense_dim, cnn) -> Model:
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
||||||
@ -137,19 +136,8 @@ def get_new_model2(dropout, flow_features, domain_features, window_size, domain_
|
|||||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
||||||
|
|
||||||
|
|
||||||
import keras.backend as K
|
def get_new_soft(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
|
||||||
|
dense_dim, cnn) -> Model:
|
||||||
|
|
||||||
def get_new_soft(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
|
|
||||||
dense_dim, cnn, model_output="both") -> Model:
|
|
||||||
def dist_reg(distant_layer):
|
|
||||||
def dist_reg_h(weights):
|
|
||||||
print("REG FUNCTION")
|
|
||||||
print(weights)
|
|
||||||
print(distant_layer)
|
|
||||||
return 0.01 * K.sum(K.abs(weights - distant_layer))
|
|
||||||
|
|
||||||
return dist_reg_h
|
|
||||||
|
|
||||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||||
@ -177,7 +165,5 @@ def get_new_soft(dropout, flow_features, domain_features, window_size, domain_le
|
|||||||
name="dense_client")(y)
|
name="dense_client")(y)
|
||||||
|
|
||||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
||||||
# model = KerasModel(inputs=(ipt_domains, ipt_flows), outputs=(out_client, out_server))
|
|
||||||
|
|
||||||
|
|
||||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
||||||
|
@ -15,7 +15,7 @@ EPOCHS=10
|
|||||||
for ((i = ${N1}; i <= ${N2}; i++))
|
for ((i = ${N1}; i <= ${N2}; i++))
|
||||||
do
|
do
|
||||||
python main.py --mode train \
|
python main.py --mode train \
|
||||||
--train ${DATADIR} \
|
--data ${DATADIR} \
|
||||||
--model ${RESDIR}/${OUTPUT}_${TYPE}_${i} \
|
--model ${RESDIR}/${OUTPUT}_${TYPE}_${i} \
|
||||||
--epochs ${EPOCHS} \
|
--epochs ${EPOCHS} \
|
||||||
--embd 128 \
|
--embd 128 \
|
||||||
|
Loading…
Reference in New Issue
Block a user