move model creation back into models package

This commit is contained in:
René Knaebel 2017-11-07 20:09:20 +01:00
parent b1f48c1895
commit e12bbda8c5
6 changed files with 67 additions and 119 deletions

View File

@ -1,39 +1,28 @@
run:
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_1 --epochs 2 --depth flat1 \
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type final --model_output both
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client --epochs 2 --depth flat1 \
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
--dense_embd 16 --domain_embd 8 --batch 64 --type final --model_output client
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_2 --epochs 2 --depth flat1 \
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_final --epochs 2 --depth flat1 \
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type inter --model_output both
--dense_embd 16 --domain_embd 8 --batch 64 --type final --model_output both
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_3 --epochs 2 --depth deep1 \
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_inter --epochs 2 --depth flat1 \
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type final --model_output both
--dense_embd 16 --domain_embd 8 --batch 64 --type inter --model_output both
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_4 --epochs 2 --depth deep1 \
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_soft --epochs 2 --depth flat1 \
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type inter --model_output both
--dense_embd 16 --domain_embd 8 --batch 64 --type soft --model_output both
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_both_5 --epochs 2 --depth flat2 \
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_long --epochs 2 --depth flat1 \
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type staggered --model_output both
--dense_embd 16 --domain_embd 8 --batch 64 --type long --model_output both
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client_1 --epochs 2 --depth flat2 \
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_staggered --epochs 2 --depth flat1 \
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type final --model_output client
--dense_embd 16 --domain_embd 8 --batch 64 --type staggered --model_output both
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client_2 --epochs 2 --depth flat2 \
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
--dense_embd 16 --domain_embd 8 --batch 64 --type inter --model_output client
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client_3 --epochs 2 --depth deep1 \
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
--dense_embd 16 --domain_embd 8 --batch 64 --type final --model_output client
python3 main.py --mode train --data data/rk_mini.csv.gz --model results/test/test_client_4 --epochs 2 --depth deep1 \
--filter_embd 32 --kernel_embd 3 --filter_main 16 --kernel_main 3 --dense_main 32 \
--dense_embd 16 --domain_embd 8 --batch 64 --balanced_weights --type inter --model_output client
test:
python3 main.py --mode test --batch 128 --models results/test/test_both_* --data data/rk_mini.csv.gz --model_output both

View File

@ -8,12 +8,10 @@ from random import random as rng
from time import ctime, time
import joblib
import keras.backend as K
import numpy as np
from keras.callbacks import EarlyStopping
import models
from main import create_model
logger = logging.getLogger('cisco_logger')
@ -48,27 +46,7 @@ class Hyperband:
def try_params(self, n_iterations, params):
n_iterations = int(round(n_iterations))
embedding, model, new_model, long_model, soft_model = models.get_models_by_params(params)
if params["type"] in ("inter", "staggered"):
model = new_model
if params["type"] == "long":
model = long_model
if params["type"] == "soft":
model = soft_model
model = create_model(model, params["model_output"])
if params["type"] == "soft":
conv_server = model.get_layer("conv_server").trainable_weights
conv_client = model.get_layer("conv_client").trainable_weights
l1 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(conv_server, conv_client)]
model.add_loss(l1)
dense_server = model.get_layer("dense_server").trainable_weights
dense_client = model.get_layer("dense_client").trainable_weights
l2 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(dense_server, dense_client)]
model.add_loss(l2)
model = models.get_models_by_params(params)
callbacks = [EarlyStopping(monitor='val_loss',
patience=5,

34
main.py
View File

@ -3,12 +3,10 @@ import operator
import os
import joblib
import keras.backend as K
import numpy as np
import pandas as pd
import tensorflow as tf
from keras.callbacks import CSVLogger, EarlyStopping, ModelCheckpoint
from keras.models import Model
from sklearn.metrics import confusion_matrix
import arguments
@ -124,15 +122,6 @@ def get_param_dist(dist_size="small"):
}
def create_model(model, output_type):
if output_type == "both":
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client, model.out_server))
elif output_type == "client":
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client,))
else:
raise Exception("unknown model output")
def shuffle_training_data(domain, flow, client, server):
idx = np.random.permutation(len(domain))
domain = domain[idx]
@ -247,27 +236,7 @@ def main_train(param=None):
custom_sample_weights = None
logger.info(f"Generator model with params: {param}")
embedding, model, new_model, long_model, soft_model = models.get_models_by_params(param)
if args.model_type in ("inter", "staggered"):
model = new_model
if args.model_type == "long":
model = long_model
if args.model_type == "soft":
model = soft_model
model = create_model(model, args.model_output)
if args.model_type == "soft":
conv_server = model.get_layer("conv_server").trainable_weights
conv_client = model.get_layer("conv_client").trainable_weights
l1 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(conv_server, conv_client)]
model.add_loss(l1)
dense_server = model.get_layer("dense_server").trainable_weights
dense_client = model.get_layer("dense_client").trainable_weights
l2 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(dense_server, dense_client)]
model.add_loss(l2)
model = models.get_models_by_params(param)
features = {"ipt_domains": domain_tr.value, "ipt_flows": flow_tr.value}
if args.model_output == "both":
@ -307,7 +276,6 @@ def main_train(param=None):
loss_weights = {"client": 1.0, "server": 0.0}
logger.info("compile and train model")
embedding.summary()
logger.info(model.get_config())
model.compile(optimizer='adam',
loss='binary_crossentropy',

View File

@ -1,14 +1,24 @@
import keras.backend as K
from keras.models import Model
from models import deep1
from models.renes_networks import selu
from . import flat_2, pauls_networks, renes_networks
def create_model(model, output_type):
if output_type == "both":
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client, model.out_server))
elif output_type == "client":
return Model(inputs=[model.in_domains, model.in_flows], outputs=(model.out_client,))
else:
raise Exception("unknown model output")
def get_models_by_params(params: dict):
# decomposing param section
# mainly embedding model
# network_type = params.get("type")
network_type = params.get("type")
network_depth = params.get("depth")
embedding_size = params.get("embedding")
filter_embedding = params.get("filter_embedding")
@ -33,23 +43,40 @@ def get_models_by_params(params: dict):
elif network_depth == "deep2":
networks = renes_networks
else:
raise Exception("network not found")
embedding_model = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding,
raise ValueError("network not found")
domain_cnn = networks.get_embedding(embedding_size, domain_length, filter_embedding, kernel_embedding,
hidden_embedding, 0.5)
final = networks.get_model(0.25, flow_features, hidden_embedding, window_size, domain_length,
filter_main, kernel_main, dense_dim, embedding_model, model_output)
if network_type == "final":
model = networks.get_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output)
elif network_type in ("inter", "staggered"):
model = networks.get_new_model(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output)
elif network_type == "long":
model = networks.get_new_model2(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output)
elif network_type == "soft":
model = networks.get_new_soft(0.25, flow_features, window_size, domain_length,
filter_main, kernel_main, dense_dim, domain_cnn)
model = create_model(model, model_output)
conv_server = model.get_layer("conv_server").trainable_weights
conv_client = model.get_layer("conv_client").trainable_weights
l1 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(conv_server, conv_client)]
model.add_loss(l1)
inter = networks.get_new_model(0.25, flow_features, hidden_embedding, window_size, domain_length,
filter_main, kernel_main, dense_dim, embedding_model, model_output)
dense_server = model.get_layer("dense_server").trainable_weights
dense_client = model.get_layer("dense_client").trainable_weights
l2 = [0.001 * K.sum(K.abs(x - y)) for (x, y) in zip(dense_server, dense_client)]
model.add_loss(l2)
else:
raise ValueError("network type not found")
long = networks.get_new_model2(0.25, flow_features, hidden_embedding, window_size, domain_length,
filter_main, kernel_main, dense_dim, embedding_model, model_output)
soft = networks.get_new_soft(0.25, flow_features, hidden_embedding, window_size, domain_length,
filter_main, kernel_main, dense_dim, embedding_model, model_output)
return embedding_model, final, inter, long, soft
return model
def get_server_model_by_params(params: dict):

View File

@ -42,8 +42,8 @@ def get_embedding(embedding_size, input_length, filter_size, kernel_size, hidden
return KerasModel(x, y)
def get_model(cnnDropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both") -> Model:
def get_model(cnnDropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
@ -51,8 +51,7 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
# CNN processing a small slides of flow windows
y = Conv1D(cnn_dims,
kernel_size,
activation='relu',
input_shape=(window_size, domain_features + flow_features))(merged)
activation='relu')(merged)
# remove temporal dimension by global max pooling
y = GlobalMaxPooling1D()(y)
y = Dropout(cnnDropout)(y)
@ -63,8 +62,8 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
return Model(ipt_domains, ipt_flows, out_client, out_server)
def get_new_model(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both") -> Model:
def get_new_model(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
@ -105,8 +104,8 @@ def get_server_model(flow_features, domain_length, dense_dim, cnn):
return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server)
def get_new_model2(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both") -> Model:
def get_new_model2(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
@ -137,19 +136,8 @@ def get_new_model2(dropout, flow_features, domain_features, window_size, domain_
return Model(ipt_domains, ipt_flows, out_client, out_server)
import keras.backend as K
def get_new_soft(dropout, flow_features, domain_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn, model_output="both") -> Model:
def dist_reg(distant_layer):
def dist_reg_h(weights):
print("REG FUNCTION")
print(weights)
print(distant_layer)
return 0.01 * K.sum(K.abs(weights - distant_layer))
return dist_reg_h
def get_new_soft(dropout, flow_features, window_size, domain_length, cnn_dims, kernel_size,
dense_dim, cnn) -> Model:
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
@ -177,7 +165,5 @@ def get_new_soft(dropout, flow_features, domain_features, window_size, domain_le
name="dense_client")(y)
out_client = Dense(1, activation='sigmoid', name="client")(y)
# model = KerasModel(inputs=(ipt_domains, ipt_flows), outputs=(out_client, out_server))
return Model(ipt_domains, ipt_flows, out_client, out_server)

View File

@ -15,7 +15,7 @@ EPOCHS=10
for ((i = ${N1}; i <= ${N2}; i++))
do
python main.py --mode train \
--train ${DATADIR} \
--data ${DATADIR} \
--model ${RESDIR}/${OUTPUT}_${TYPE}_${i} \
--epochs ${EPOCHS} \
--embd 128 \