add h5py example

This commit is contained in:
René Knaebel 2017-07-08 17:46:07 +02:00
parent 4a9f94a029
commit fdc03c9922
3 changed files with 87 additions and 52 deletions

View File

@ -1,6 +1,7 @@
# -*- coding: utf-8 -*-
import string
import h5py
import numpy as np
import pandas as pd
from keras.utils import np_utils
@ -91,38 +92,23 @@ def get_flow_features(flow):
return features
# NOT USED ATM
def get_cisco_features(curDataLine, urlSIPDict):
numCiscoFeatures = 30
try:
ciscoFeatures = urlSIPDict[str(curDataLine['domain']) + str(curDataLine['server_ip'])]
# log transform
ciscoFeatures = np.log1p(ciscoFeatures).astype(float)
return ciscoFeatures.ravel()
except:
return np.zeros([numCiscoFeatures, ]).ravel()
def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10, use_cisco_features=False):
domains = []
features = []
print("get chunks from user data frames")
for i, user_flow in enumerate(get_flow_per_user(user_flow_df)):
for i, user_flow in tqdm(list(enumerate(get_flow_per_user(user_flow_df)))):
(domain_windows, feature_windows) = get_user_chunks(user_flow,
windowSize=window_size,
overlapping=False,
maxLengthInSeconds=-1)
domains += domain_windows
features += feature_windows
# TODO: remove later
if i >= 50:
break
print("create training dataset")
domain_tr, flow_tr, hits_tr, names_tr, server_tr, trusted_hits_tr = create_dataset_from_lists(
domains=domains, features=features, vocab=char_dict,
domain_tr, flow_tr, hits_tr, names_tr, server_tr, trusted_hits_tr = create_dataset_from_lists(domains=domains,
flows=features,
vocab=char_dict,
max_len=max_len,
use_cisco_features=use_cisco_features, urlSIPDIct=dict(),
window_size=window_size)
# make client labels discrete with 4 different values
@ -144,32 +130,29 @@ def create_dataset_from_flows(user_flow_df, char_dict, max_len, window_size=10,
return domain_tr, flow_tr, client_tr, server_tr
def create_dataset_from_lists(domains, features, vocab, max_len,
use_cisco_features=False, urlSIPDIct=dict(),
window_size=10):
def store_h5dataset(domain_tr, flow_tr, client_tr, server_tr):
f = h5py.File("data/full_dataset.h5", "w")
domain_tr = domain_tr.astype(np.int8)
f.create_dataset("domain", data=domain_tr)
f.create_dataset("flow", data=flow_tr)
server_tr = server_tr.astype(np.bool)
client_tr = client_tr.astype(np.bool)
f.create_dataset("client", data=client_tr)
f.create_dataset("server", data=server_tr)
f.close()
def create_dataset_from_lists(domains, flows, vocab, max_len, window_size=10):
"""
combines domain and feature windows to sequential training data
:param domains: list of domain windows
:param features: list of feature windows
:param flows: list of flow feature windows
:param vocab:
:param max_len:
:param use_cisco_features: idk
:param urlSIPDIct: idk
:param window_size: size of the flow window
:return:
"""
# TODO: check for hits vs vth consistency
# if 'hits' in dfs[0].keys():
# hits_col = 'hits'
# elif 'virusTotalHits' in dfs[0].keys():
# hits_col = 'virusTotalHits'
hits_col = "virusTotalHits"
numFlowFeatures = 3
numCiscoFeatures = 30
numFeatures = numFlowFeatures
if use_cisco_features:
numFeatures += numCiscoFeatures
numFeatures = 3
sample_size = len(domains)
hits = []
names = []
@ -181,14 +164,13 @@ def create_dataset_from_lists(domains, features, vocab, max_len,
for i in tqdm(np.arange(sample_size), miniters=10):
for j in range(window_size):
domain_features[i, j] = get_domain_features(domains[i][j], vocab, max_len)
flow_features[i, j] = get_flow_features(features[i].iloc[j])
# TODO: cisco features?
domain_features[i, j, :] = get_domain_features(domains[i][j], vocab, max_len)
flow_features[i, j, :] = get_flow_features(flows[i].iloc[j])
hits.append(np.max(features[i][hits_col]))
names.append(np.unique(features[i]['user_hash']))
servers.append(np.max(features[i]['serverLabel']))
trusted_hits.append(np.max(features[i]['trustedHits']))
hits.append(np.max(flows[i]['virusTotalHits']))
names.append(np.unique(flows[i]['user_hash']))
servers.append(np.max(flows[i]['serverLabel']))
trusted_hits.append(np.max(flows[i]['trustedHits']))
return (domain_features, flow_features,
np.array(hits), np.array(names), np.array(servers), np.array(trusted_hits))
@ -206,11 +188,20 @@ def discretize_label(values, threshold):
def get_user_flow_data(csv_file):
types = {
"duration": int,
"bytes_down": int,
"bytes_up": int,
"domain": object,
"timeStamp": float,
"server_ip": object,
"user_hash": float,
"virusTotalHits": int,
"serverLabel": int,
"trustedHits": int
}
df = pd.read_csv(csv_file)
keys = ["duration", "bytes_down", "bytes_up", "domain",
"timeStamp", "server_ip", "user_hash", "virusTotalHits",
"serverLabel", "trustedHits"]
df = df[keys]
df = df[list(types.keys())]
df.set_index(keys=['user_hash'], drop=False, inplace=True)
return df

39
main.py
View File

@ -1,5 +1,7 @@
import argparse
import h5py
from keras.models import load_model
from keras.utils import np_utils
import dataset
@ -8,7 +10,8 @@ import models
parser = argparse.ArgumentParser()
parser.add_argument("--modes", action="store", dest="modes", nargs="+")
parser.add_argument("--modes", action="store", dest="modes", nargs="+",
default=[])
parser.add_argument("--train", action="store", dest="train_data",
default="data/full_dataset.csv.tar.bz2")
@ -193,7 +196,39 @@ def main_train():
model.save(args.clf_model)
from keras.models import load_model
def main_train_h5():
# parameter
dropout_main = 0.5
dense_main = 512
kernel_main = 3
filter_main = 128
network = models.pauls_networks if args.model_type == "paul" else models.renes_networks
char_dict = dataset.get_character_dict()
data = h5py.File("data/full_dataset.h5", "r")
embedding = network.get_embedding(len(char_dict) + 1, args.embedding, args.domain_length,
args.hidden_char_dims, kernel_main, args.domain_embedding, 0.5)
embedding.summary()
model = network.get_model(dropout_main, data["flow"].shape[-1], args.domain_embedding,
args.window, args.domain_length, filter_main, kernel_main,
dense_main, embedding)
model.summary()
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit([data["domain"], data["flow"]],
[data["client"], data["server"]],
batch_size=args.batch_size,
epochs=args.epochs,
shuffle=True,
validation_split=0.2)
embedding.save(args.embedding_model)
model.save(args.clf_model)
def main_test():

View File

@ -1,9 +1,18 @@
#!/usr/bin/python2
import joblib
import numpy as np
import pandas as pd
df = joblib.load("/mnt/projekte/pmlcluster/cisco/trainData/multipleTaskLearning/currentData.joblib")
df = pd.concat(df["data"])
df.reset_index(inplace=True)
df.dropna(axis=0, how="any", inplace=True)
df[["duration", "bytes_down", "bytes_up"]] = df[["duration", "bytes_down", "bytes_up"]].astype(np.int)
df[["domain", "server_ip"]] = df[["domain", "server_ip"]].astype(str)
df[["server_label"]] = df[["server_label"]].astype(np.bool)
df.serverLabel = df.serverLabel.astype(np.bool)
df.virusTotalHits = df.virusTotalHits.astype(np.int)
df.trustedHits = df.trustedHits.astype(np.int)
df.to_csv("/tmp/rk/full_future_dataset.csv.gz", compression="gzip")