import argparse import numpy as np from keras.utils import np_utils import dataset import models parser = argparse.ArgumentParser() parser.add_argument("--modes", action="store", dest="modes", nargs="+") # parser.add_argument("--data", action="store", dest="data", # default="data/") # # parser.add_argument("--h5data", action="store", dest="h5data", # default="") # # parser.add_argument("--model", action="store", dest="model", # default="model_x") # # parser.add_argument("--pred", action="store", dest="pred", # default="") # # parser.add_argument("--type", action="store", dest="model_type", # default="simple_conv") # parser.add_argument("--batch", action="store", dest="batch_size", default=64, type=int) parser.add_argument("--epochs", action="store", dest="epochs", default=10, type=int) # parser.add_argument("--samples", action="store", dest="samples", # default=100000, type=int) # # parser.add_argument("--samples_val", action="store", dest="samples_val", # default=10000, type=int) # # parser.add_argument("--area", action="store", dest="area_size", # default=25, type=int) # # parser.add_argument("--queue", action="store", dest="queue_size", # default=50, type=int) # # parser.add_argument("--p", action="store", dest="p_train", # default=0.5, type=float) # # parser.add_argument("--p_val", action="store", dest="p_val", # default=0.01, type=float) # # parser.add_argument("--gpu", action="store", dest="gpu", # default=0, type=int) # # parser.add_argument("--tmp", action="store_true", dest="tmp") # # parser.add_argument("--test", action="store", dest="test_image", # default=6, choices=range(7), type=int) args = parser.parse_args() # config = tf.ConfigProto(log_device_placement=True) # config.gpu_options.per_process_gpu_memory_fraction = 0.5 # config.gpu_options.allow_growth = True # session = tf.Session(config=config) def main(): # parameter innerCNNFilters = 512 innerCNNKernelSize = 2 cnnDropout = 0.5 cnnHiddenDims = 1024 domainFeatures = 512 flowFeatures = 3 numCiscoFeatures = 30 windowSize = 10 maxLen = 40 embeddingSize = 100 kernel_size = 2 drop_out = 0.5 filters = 2 hidden_dims = 100 vocabSize = 40 threshold = 3 minFlowsPerUser = 10 numEpochs = 100 char_dict = dataset.get_character_dict() user_flow_df = dataset.get_user_flow_data() print("create training dataset") (X_tr, hits_tr, names_tr, server_tr, trusted_hits_tr) = dataset.create_dataset_from_flows( user_flow_df, char_dict, max_len=maxLen, window_size=windowSize) # make client labels discrete with 4 different values # TODO: use trusted_hits_tr for client classification too client_labels = np.apply_along_axis(lambda x: dataset.discretize_label(x, 3), 0, np.atleast_2d(hits_tr)) # select only 1.0 and 0.0 from training data pos_idx = np.where(client_labels == 1.0)[0] neg_idx = np.where(client_labels == 0.0)[0] idx = np.concatenate((pos_idx, neg_idx)) # select labels for prediction client_labels = client_labels[idx] server_labels = server_tr[idx] shared_cnn = models.get_shared_cnn(len(char_dict) + 1, embeddingSize, maxLen, domainFeatures, kernel_size, domainFeatures, 0.5) model = models.get_top_cnn(shared_cnn, flowFeatures, maxLen, windowSize, domainFeatures, filters, kernel_size, cnnHiddenDims, cnnDropout) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) client_labels = np_utils.to_categorical(client_labels, 2) server_labels = np_utils.to_categorical(server_labels, 2) model.fit(X_tr, [client_labels, server_labels], batch_size=args.batch_size, epochs=args.epochs, shuffle=True) # TODO: for validation we use future data -> validation_data=(testData,testLabel)) if __name__ == "__main__": main()