import argparse import numpy as np from keras.utils import np_utils import dataset import models parser = argparse.ArgumentParser() parser.add_argument("--modes", action="store", dest="modes", nargs="+") # parser.add_argument("--data", action="store", dest="data", # default="data/") # # parser.add_argument("--h5data", action="store", dest="h5data", # default="") # # parser.add_argument("--model", action="store", dest="model", # default="model_x") # # parser.add_argument("--pred", action="store", dest="pred", # default="") # # parser.add_argument("--type", action="store", dest="model_type", # default="simple_conv") # parser.add_argument("--batch", action="store", dest="batch_size", default=64, type=int) parser.add_argument("--epochs", action="store", dest="epochs", default=10, type=int) # parser.add_argument("--samples", action="store", dest="samples", # default=100000, type=int) # # parser.add_argument("--samples_val", action="store", dest="samples_val", # default=10000, type=int) # parser.add_argument("--embd", action="store", dest="embedding", default=128, type=int) parser.add_argument("--hidden_char_dims", action="store", dest="hidden_char_dims", default=256, type=int) parser.add_argument("--window", action="store", dest="window", default=10, type=int) parser.add_argument("--domain_length", action="store", dest="domain_length", default=40, type=int) parser.add_argument("--domain_embd", action="store", dest="domain_embedding", default=512, type=int) # parser.add_argument("--queue", action="store", dest="queue_size", # default=50, type=int) # # parser.add_argument("--p", action="store", dest="p_train", # default=0.5, type=float) # # parser.add_argument("--p_val", action="store", dest="p_val", # default=0.01, type=float) # # parser.add_argument("--gpu", action="store", dest="gpu", # default=0, type=int) # # parser.add_argument("--tmp", action="store_true", dest="tmp") # # parser.add_argument("--test", action="store", dest="test_image", # default=6, choices=range(7), type=int) args = parser.parse_args() # config = tf.ConfigProto(log_device_placement=True) # config.gpu_options.per_process_gpu_memory_fraction = 0.5 # config.gpu_options.allow_growth = True # session = tf.Session(config=config) def main(): # parameter cnnDropout = 0.5 cnnHiddenDims = 1024 flowFeatures = 3 numCiscoFeatures = 30 kernel_size = 3 drop_out = 0.5 filters = 128 char_dict = dataset.get_character_dict() user_flow_df = dataset.get_user_flow_data() print("create training dataset") (X_tr, hits_tr, names_tr, server_tr, trusted_hits_tr) = dataset.create_dataset_from_flows( user_flow_df, char_dict, max_len=args.domain_length, window_size=args.window) # make client labels discrete with 4 different values # TODO: use trusted_hits_tr for client classification too client_labels = np.apply_along_axis(lambda x: dataset.discretize_label(x, 3), 0, np.atleast_2d(hits_tr)) # select only 1.0 and 0.0 from training data pos_idx = np.where(client_labels == 1.0)[0] neg_idx = np.where(client_labels == 0.0)[0] idx = np.concatenate((pos_idx, neg_idx)) # select labels for prediction client_labels = client_labels[idx] server_labels = server_tr[idx] shared_cnn = models.renes_networks.get_embedding(len(char_dict) + 1, args.embedding, args.domain_length, args.hidden_char_dims, kernel_size, args.domain_embedding, 0.5) shared_cnn.summary() model = models.renes_networks.get_model(cnnDropout, flowFeatures, args.domain_embedding, args.window, args.domain_length, filters, kernel_size, cnnHiddenDims, shared_cnn) model.summary() model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) client_labels = np_utils.to_categorical(client_labels, 2) server_labels = np_utils.to_categorical(server_labels, 2) model.fit(X_tr, [client_labels, server_labels], batch_size=args.batch_size, epochs=args.epochs, shuffle=True) # TODO: for validation we use future data -> validation_data=(testData,testLabel)) if __name__ == "__main__": main()