ma_cisco_malware/models.py

42 lines
1.6 KiB
Python

import keras
from keras.engine import Input, Model
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed
def get_shared_cnn(vocab_size, embedding_size, input_length, filters, kernel_size,
hidden_dims, drop_out):
x = y = Input(shape=(input_length,))
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
y = Conv1D(filters, kernel_size, activation='relu')(y)
y = GlobalMaxPooling1D()(y)
y = Dense(hidden_dims)(y)
y = Dropout(drop_out)(y)
y = Activation('relu')(y)
return Model(x, y)
def get_full_model(vocabSize, embeddingSize, maxLen, domainFeatures, flowFeatures,
filters, h1, h2, dropout, dense):
pass
def get_top_cnn(cnn, numFeatures, maxLen, windowSize, domainFeatures, filters, kernel_size, cnnHiddenDims, cnnDropout):
ipt_domains = Input(shape=(windowSize, maxLen), name="ipt_domains")
encoded = TimeDistributed(cnn)(ipt_domains)
ipt_flows = Input(shape=(windowSize, numFeatures), name="ipt_flows")
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
# add second cnn
y = Conv1D(filters,
kernel_size,
activation='relu',
input_shape=(windowSize, domainFeatures + numFeatures))(merged)
# TODO: why global pooling? -> 3D to 2D
# we use max pooling:
y = GlobalMaxPooling1D()(y)
y = Dropout(cnnDropout)(y)
y = Dense(cnnHiddenDims, activation='relu')(y)
y1 = Dense(2, activation='softmax', name="client")(y)
y2 = Dense(2, activation='softmax', name="server")(y)
return Model(inputs=[ipt_domains, ipt_flows], outputs=(y1, y2))