ma_cisco_malware/dataset.py
René Knaebel 88e3eda595 refactor hyperband; fix domain generation
integrate hyperband option in training procedure - start refactoring - remove the index erro in generation and add helper functions
2017-11-04 12:47:08 +01:00

294 lines
9.8 KiB
Python

# -*- coding: utf-8 -*-
import logging
import string
from multiprocessing import Pool
import h5py
import joblib
import numpy as np
import pandas as pd
from tqdm import tqdm
logger = logging.getLogger('cisco_logger')
char2idx = dict((char, idx + 1) for (idx, char) in
enumerate(string.ascii_lowercase + string.punctuation + string.digits + " "))
idx2char = {v: k for k, v in char2idx.items()}
def get_character_dict():
return char2idx
def get_vocab_size():
return len(char2idx) + 1
def encode_char(c):
return char2idx.get(c, 0)
def decode_char(i):
return idx2char.get(i, "")
encode_char = np.vectorize(encode_char)
decode_char = np.vectorize(decode_char)
def encode_domain(domain: string):
return encode_char(list(domain))
def decode_domain(domain):
return "".join(decode_char(domain))
def get_user_chunks(user_flow, window=10):
result = []
chunk_size = (len(user_flow) // window)
for i in range(chunk_size):
result.append(user_flow.iloc[i * window:(i + 1) * window])
if result and len(result[-1]) != window:
result.pop()
return result
def get_domain_features(domain: string, max_length=40):
encoding = np.zeros((max_length,))
for j in range(min(len(domain), max_length)):
c = domain[len(domain) - 1 - j]
encoding[max_length - 1 - j] = encode_char(c)
return encoding
def get_all_flow_features(features):
flows = np.stack(
map(lambda f: f[["duration", "bytes_up", "bytes_down"]], features)
)
return np.log1p(flows)
def filter_window_dataset_by_hits(domain, flow, name, hits, trusted_hits, server):
# select only 1.0 and 0.0 from training data
pos_idx = np.where(np.logical_or(hits == 1.0, trusted_hits >= 1.0))[0]
neg_idx = np.where(hits == 0.0)[0]
idx = np.concatenate((pos_idx, neg_idx))
# choose selected sample to train on
domain = domain[idx]
flow = flow[idx]
client = np.zeros_like(idx, float)
client[:pos_idx.shape[-1]] = 1.0
server = server[idx]
name = name[idx]
return domain, flow, name, client, server
def create_raw_dataset_from_flows(user_flow_df, max_len, window_size=10):
logger.info("get chunks from user data frames")
with Pool() as pool:
results = []
for user_flow in tqdm(get_flow_per_user(user_flow_df), total=len(user_flow_df['user_hash'].unique().tolist())):
results.append(pool.apply_async(get_user_chunks, (user_flow, window_size)))
windows = [window for res in results for window in res.get()]
logger.info("create training dataset")
domain, flow, hits, name, server, trusted_hits = create_dataset_from_windows(chunks=windows,
max_len=max_len)
# make client labels discrete with 4 different values
hits = np.apply_along_axis(lambda x: make_label_discrete(x, 3), 0, np.atleast_2d(hits))
return domain, flow, name, hits, trusted_hits, server
def store_h5dataset(path, data: dict):
f = h5py.File(path + ".h5", "w")
for key, val in data.items():
f.create_dataset(key, data=val)
f.close()
def check_h5dataset(path):
return open(path + ".h5", "r")
def load_h5dataset(path):
f = h5py.File(path + ".h5", "r")
data = {}
for k in f.keys():
data[k] = f[k]
return data
def create_dataset_from_windows(chunks, max_len):
"""
combines domain and feature windows to sequential training data
:param chunks: list of flow feature windows
:param vocab:
:param max_len:
:return:
"""
def get_domain_features_reduced(d):
return get_domain_features(d[0], max_len)
logger.info(" compute domain features")
domain_features = []
for ds in tqdm(map(lambda f: f.domain, chunks)):
domain_features.append(np.apply_along_axis(get_domain_features_reduced, 2, np.atleast_3d(ds)))
domain_features = np.concatenate(domain_features, 0)
logger.info(" compute flow features")
flow_features = get_all_flow_features(chunks)
logger.info(" select hits")
hits = np.max(np.stack(map(lambda f: f.virusTotalHits, chunks)), axis=1)
logger.info(" select names")
names = np.stack(map(lambda f: f.user_hash, chunks))
assert (names[:, :1].repeat(10, axis=1) == names).all()
names = names[:, 0]
logger.info(" select servers")
servers = np.stack(map(lambda f: f.serverLabel, chunks))
logger.info(" select trusted hits")
trusted_hits = np.max(np.stack(map(lambda f: f.trustedHits, chunks)), axis=1)
return (domain_features, flow_features,
hits, names, servers, trusted_hits)
def make_label_discrete(values, threshold):
max_val = np.max(values)
if max_val >= threshold:
return 1.0
elif max_val == -1:
return -1.0
elif 0 < max_val < threshold:
return -2.0
else:
return 0.0
def get_user_flow_data(csv_file):
types = {
"duration": int,
"bytes_down": int,
"bytes_up": int,
"domain": object,
"timeStamp": float,
"http_method": object,
"server_ip": object,
"user_hash": float,
"virusTotalHits": int,
"serverLabel": int,
"trustedHits": int
}
df = pd.read_csv(csv_file, index_col=False)
df = df[list(types.keys())]
# df.set_index(keys=['user_hash'], drop=False, inplace=True)
return df
def get_flow_per_user(df):
users = df['user_hash'].unique().tolist()
for user in users:
yield df.loc[df.user_hash == user].dropna(axis=0, how="any")
def load_or_generate_h5data(h5data, train_data, domain_length, window_size):
logger.info(f"check for h5data {h5data}")
try:
check_h5dataset(h5data)
except FileNotFoundError:
logger.info("load raw training dataset")
domain, flow, name, hits, trusted_hits, server = load_or_generate_raw_h5data(h5data, train_data,
domain_length, window_size)
logger.info("filter training dataset")
domain, flow, name, client, server = filter_window_dataset_by_hits(domain.value, flow.value,
name.value, hits.value,
trusted_hits.value, server.value)
logger.info("store training dataset as h5 file")
data = {
"domain": domain.astype(np.int8),
"flow": flow,
"name": name,
"client": client.astype(np.bool),
"server": server.astype(np.bool)
}
store_h5dataset(h5data, data)
logger.info("load h5 dataset")
data = load_h5dataset(h5data)
return data["domain"], data["flow"], data["name"], data["client"], data["server"]
def load_or_generate_raw_h5data(h5data, train_data, domain_length, window_size):
h5data = h5data + "_raw"
logger.info(f"check for h5data {h5data}")
try:
check_h5dataset(h5data)
except FileNotFoundError:
logger.info("h5 data not found - load csv file")
user_flow_df = get_user_flow_data(train_data)
logger.info("create raw training dataset")
domain, flow, name, hits, trusted_hits, server = create_raw_dataset_from_flows(user_flow_df, domain_length,
window_size)
logger.info("store raw training dataset as h5 file")
data = {
"domain": domain.astype(np.int8),
"flow": flow,
"name": name,
"hits_vt": hits.astype(np.int8),
"hits_trusted": hits.astype(np.int8),
"server": server.astype(np.bool)
}
store_h5dataset(h5data, data)
logger.info("load h5 dataset")
data = load_h5dataset(h5data)
return data["domain"], data["flow"], data["name"], data["hits_vt"], data["hits_trusted"], data["server"]
def generate_names(train_data, window_size):
user_flow_df = get_user_flow_data(train_data)
with Pool() as pool:
results = []
for user_flow in tqdm(get_flow_per_user(user_flow_df),
total=len(user_flow_df['user_hash'].unique().tolist())):
results.append(pool.apply_async(get_user_chunks, (user_flow, window_size)))
windows = [window for res in results for window in res.get()]
names = np.stack(map(lambda f: f.user_hash, windows))
names = names[:, 0]
return names
def load_or_generate_domains(train_data, domain_length):
fn = f"{train_data}_domains.gz"
try:
user_flow_df = pd.read_csv(fn)
except FileNotFoundError:
user_flow_df = get_user_flow_data(train_data)
# user_flow_df.reset_index(inplace=True)
user_flow_df = user_flow_df[["domain", "serverLabel", "trustedHits", "virusTotalHits"]].dropna(axis=0,
how="any")
user_flow_df = user_flow_df.groupby(user_flow_df.domain).mean()
user_flow_df.reset_index(inplace=True)
user_flow_df["clientLabel"] = np.where(
np.logical_or(user_flow_df.trustedHits > 0, user_flow_df.virusTotalHits >= 3), True, False)
user_flow_df[["serverLabel", "clientLabel"]] = user_flow_df[["serverLabel", "clientLabel"]].astype(bool)
user_flow_df = user_flow_df[["domain", "serverLabel", "clientLabel"]]
user_flow_df.to_csv(fn, compression="gzip")
domain_encs = user_flow_df.domain.apply(lambda d: get_domain_features(d, domain_length))
domain_encs = np.stack(domain_encs)
return domain_encs, user_flow_df.domain, user_flow_df[["clientLabel", "serverLabel"]].as_matrix().astype(bool)
def save_predictions(path, results):
joblib.dump(results, path + "/results.joblib", compress=3)
def load_predictions(path):
return joblib.load(path + "/results.joblib")