Refactored implementation of completion.
This commit is contained in:
		@@ -34,6 +34,9 @@ class VariableStack
 | 
			
		||||
std::vector<ast::Variable> collectFreeVariables(const ast::Formula &formula);
 | 
			
		||||
std::vector<ast::Variable> collectFreeVariables(const ast::Formula &formula, ast::VariableStack &variableStack);
 | 
			
		||||
 | 
			
		||||
bool matches(const ast::Predicate &lhs, const ast::Predicate &rhs);
 | 
			
		||||
void collectPredicates(const ast::Formula &formula, std::vector<const ast::Predicate *> &predicates);
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -194,5 +194,44 @@ std::vector<ast::Variable> collectFreeVariables(const ast::Formula &formula, ast
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
struct CollectPredicatesVisitor : public RecursiveFormulaVisitor<CollectPredicatesVisitor>
 | 
			
		||||
{
 | 
			
		||||
	static void accept(const ast::Predicate &predicate, const ast::Formula &, std::vector<const ast::Predicate *> &predicates)
 | 
			
		||||
	{
 | 
			
		||||
		const auto predicateMatches =
 | 
			
		||||
			[&predicate](const auto *otherPredicate)
 | 
			
		||||
			{
 | 
			
		||||
				return matches(predicate, *otherPredicate);
 | 
			
		||||
			};
 | 
			
		||||
 | 
			
		||||
		if (std::find_if(predicates.cbegin(), predicates.cend(), predicateMatches) == predicates.cend())
 | 
			
		||||
			predicates.emplace_back(&predicate);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Ignore all other types of expressions
 | 
			
		||||
	template<class T>
 | 
			
		||||
	static void accept(const T &, const ast::Formula &, std::vector<const ast::Predicate *> &)
 | 
			
		||||
	{
 | 
			
		||||
	}
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
bool matches(const ast::Predicate &lhs, const ast::Predicate &rhs)
 | 
			
		||||
{
 | 
			
		||||
	return (lhs.name == rhs.name && lhs.arity() == rhs.arity());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
// TODO: remove const_cast
 | 
			
		||||
void collectPredicates(const ast::Formula &formula, std::vector<const ast::Predicate *> &predicates)
 | 
			
		||||
{
 | 
			
		||||
	auto &formulaMutable = const_cast<ast::Formula &>(formula);
 | 
			
		||||
	formulaMutable.accept(CollectPredicatesVisitor(), formulaMutable, predicates);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -2,6 +2,7 @@
 | 
			
		||||
 | 
			
		||||
#include <anthem/ASTUtils.h>
 | 
			
		||||
#include <anthem/ASTVisitors.h>
 | 
			
		||||
#include <anthem/Utils.h>
 | 
			
		||||
 | 
			
		||||
namespace anthem
 | 
			
		||||
{
 | 
			
		||||
@@ -12,163 +13,133 @@ namespace anthem
 | 
			
		||||
//
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
// Checks that two matching predicates (same name, same arity) have the same arguments
 | 
			
		||||
void checkMatchingPredicates(const ast::Term &lhs, const ast::Term &rhs)
 | 
			
		||||
// Copies the parameters of a predicate
 | 
			
		||||
std::vector<ast::Variable> copyParameters(const ast::Predicate &predicate)
 | 
			
		||||
{
 | 
			
		||||
	if (!lhs.is<ast::Variable>() || !rhs.is<ast::Variable>())
 | 
			
		||||
		throw std::runtime_error("cannot preform completion, only variables supported in predicates currently");
 | 
			
		||||
	std::vector<ast::Variable> parameters;
 | 
			
		||||
	parameters.reserve(predicate.arity());
 | 
			
		||||
 | 
			
		||||
	if (lhs.get<ast::Variable>().name != rhs.get<ast::Variable>().name)
 | 
			
		||||
		throw std::runtime_error("cannot perform completion, inconsistent predicate argument naming");
 | 
			
		||||
	for (const auto ¶meter : predicate.arguments)
 | 
			
		||||
	{
 | 
			
		||||
		assert(parameter.is<ast::Variable>());
 | 
			
		||||
		parameters.emplace_back(ast::deepCopy(parameter.get<ast::Variable>()));
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return parameters;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
void completePredicate(const ast::Predicate &predicate, std::vector<ast::Formula> &formulas, std::size_t &formulaIndex)
 | 
			
		||||
// Builds the conjunction within the completed formula for a given predicate
 | 
			
		||||
ast::Formula buildCompletedFormulaDisjunction(const ast::Predicate &predicate, const std::vector<ast::Variable> ¶meters, const std::vector<ast::Formula> &formulas)
 | 
			
		||||
{
 | 
			
		||||
	// Check that predicate is in normal form
 | 
			
		||||
	for (auto i = formulaIndex; i < formulas.size(); i++)
 | 
			
		||||
	{
 | 
			
		||||
		auto &formula = formulas[i];
 | 
			
		||||
		assert(formula.is<ast::Implies>());
 | 
			
		||||
		auto &implies = formula.get<ast::Implies>();
 | 
			
		||||
	auto disjunction = ast::Formula::make<ast::Or>();
 | 
			
		||||
 | 
			
		||||
		if (!implies.consequent.is<ast::Predicate>())
 | 
			
		||||
			continue;
 | 
			
		||||
 | 
			
		||||
		auto &otherPredicate = implies.consequent.get<ast::Predicate>();
 | 
			
		||||
 | 
			
		||||
		if (predicate.arity() != otherPredicate.arity() || predicate.name != otherPredicate.name)
 | 
			
		||||
			continue;
 | 
			
		||||
 | 
			
		||||
		for (std::size_t i = 0; i < predicate.arguments.size(); i++)
 | 
			
		||||
			checkMatchingPredicates(predicate.arguments[i], otherPredicate.arguments[i]);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Copy the predicate’s arguments for the completed formula
 | 
			
		||||
	std::vector<ast::Variable> variables;
 | 
			
		||||
	variables.reserve(predicate.arguments.size());
 | 
			
		||||
 | 
			
		||||
	for (const auto &argument : predicate.arguments)
 | 
			
		||||
	{
 | 
			
		||||
		assert(argument.is<ast::Variable>());
 | 
			
		||||
		variables.emplace_back(ast::deepCopy(argument.get<ast::Variable>()));
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	auto or_ = ast::Formula::make<ast::Or>();
 | 
			
		||||
	ast::VariableStack variableStack;
 | 
			
		||||
	variableStack.push(¶meters);
 | 
			
		||||
 | 
			
		||||
	// Build the conjunction of all formulas with the predicate as consequent
 | 
			
		||||
	for (auto i = formulaIndex; i < formulas.size();)
 | 
			
		||||
	for (const auto &formula : formulas)
 | 
			
		||||
	{
 | 
			
		||||
		auto &formula = formulas[i];
 | 
			
		||||
		assert(formula.is<ast::Implies>());
 | 
			
		||||
		auto &implies = formula.get<ast::Implies>();
 | 
			
		||||
 | 
			
		||||
		if (!implies.consequent.is<ast::Predicate>())
 | 
			
		||||
		{
 | 
			
		||||
			i++;
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		auto &otherPredicate = implies.consequent.get<ast::Predicate>();
 | 
			
		||||
 | 
			
		||||
		if (predicate.arity() != otherPredicate.arity() || predicate.name != otherPredicate.name)
 | 
			
		||||
		{
 | 
			
		||||
			i++;
 | 
			
		||||
		if (!ast::matches(predicate, otherPredicate))
 | 
			
		||||
			continue;
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		ast::VariableStack variableStack;
 | 
			
		||||
		variableStack.push(&variables);
 | 
			
		||||
 | 
			
		||||
		auto variables = ast::collectFreeVariables(implies.antecedent, variableStack);
 | 
			
		||||
 | 
			
		||||
		// TODO: avoid deep copies
 | 
			
		||||
		if (variables.empty())
 | 
			
		||||
			or_.get<ast::Or>().arguments.emplace_back(std::move(implies.antecedent));
 | 
			
		||||
			disjunction.get<ast::Or>().arguments.emplace_back(ast::deepCopy(implies.antecedent));
 | 
			
		||||
		else
 | 
			
		||||
		{
 | 
			
		||||
			auto exists = ast::Formula::make<ast::Exists>(std::move(variables), std::move(implies.antecedent));
 | 
			
		||||
			or_.get<ast::Or>().arguments.emplace_back(std::move(exists));
 | 
			
		||||
			auto exists = ast::Formula::make<ast::Exists>(std::move(variables), ast::deepCopy(implies.antecedent));
 | 
			
		||||
			disjunction.get<ast::Or>().arguments.emplace_back(std::move(exists));
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		if (i > formulaIndex)
 | 
			
		||||
			formulas.erase(formulas.begin() + i);
 | 
			
		||||
		else
 | 
			
		||||
			i++;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	auto biconditionalRight = std::move(or_);
 | 
			
		||||
 | 
			
		||||
	// If the disjunction contains only one element, drop the enclosing disjunction
 | 
			
		||||
	if (biconditionalRight.get<ast::Or>().arguments.size() == 1)
 | 
			
		||||
		biconditionalRight = biconditionalRight.get<ast::Or>().arguments.front();
 | 
			
		||||
 | 
			
		||||
	// If the biconditional would be of the form “F <-> true” or “F <-> false,” simplify the output
 | 
			
		||||
	if (biconditionalRight.is<ast::Boolean>())
 | 
			
		||||
	{
 | 
			
		||||
		const auto &boolean = biconditionalRight.get<ast::Boolean>();
 | 
			
		||||
 | 
			
		||||
		if (boolean.value == true)
 | 
			
		||||
			formulas[formulaIndex] = ast::deepCopy(predicate);
 | 
			
		||||
		else
 | 
			
		||||
			formulas[formulaIndex] = ast::Formula::make<ast::Not>(ast::deepCopy(predicate));
 | 
			
		||||
 | 
			
		||||
		formulaIndex++;
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Build the biconditional within the completed formula
 | 
			
		||||
	auto biconditional = ast::Formula::make<ast::Biconditional>(ast::deepCopy(predicate), std::move(biconditionalRight));
 | 
			
		||||
 | 
			
		||||
	if (predicate.arguments.empty())
 | 
			
		||||
	{
 | 
			
		||||
		formulas[formulaIndex] = std::move(biconditional);
 | 
			
		||||
		formulaIndex++;
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	auto completedFormula = ast::Formula::make<ast::ForAll>(std::move(variables), std::move(biconditional));
 | 
			
		||||
 | 
			
		||||
	formulas[formulaIndex] = std::move(completedFormula);
 | 
			
		||||
	formulaIndex++;
 | 
			
		||||
	return disjunction;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
void completeBoolean(std::vector<ast::Formula> &formulas, std::size_t &formulaIndex)
 | 
			
		||||
// Builds the quantified inner part of the completed formula
 | 
			
		||||
ast::Formula buildCompletedFormulaQuantified(ast::Predicate &&predicate, ast::Formula &&innerFormula)
 | 
			
		||||
{
 | 
			
		||||
	assert(innerFormula.is<ast::Or>());
 | 
			
		||||
 | 
			
		||||
	if (innerFormula.get<ast::Or>().arguments.empty())
 | 
			
		||||
		return ast::Formula::make<ast::Not>(std::move(predicate));
 | 
			
		||||
 | 
			
		||||
	if (innerFormula.get<ast::Or>().arguments.size() == 1)
 | 
			
		||||
		innerFormula = std::move(innerFormula.get<ast::Or>().arguments.front());
 | 
			
		||||
 | 
			
		||||
	if (innerFormula.is<ast::Boolean>())
 | 
			
		||||
	{
 | 
			
		||||
		const auto &boolean = innerFormula.get<ast::Boolean>();
 | 
			
		||||
 | 
			
		||||
		if (boolean.value == true)
 | 
			
		||||
			return std::move(predicate);
 | 
			
		||||
		else
 | 
			
		||||
			return ast::Formula::make<ast::Not>(std::move(predicate));
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return ast::Formula::make<ast::Biconditional>(std::move(predicate), std::move(innerFormula));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
void completePredicate(ast::Predicate &&predicate, const std::vector<ast::Formula> &formulas, std::vector<ast::Formula> &completedFormulas)
 | 
			
		||||
{
 | 
			
		||||
	auto parameters = copyParameters(predicate);
 | 
			
		||||
	auto completedFormulaDisjunction = buildCompletedFormulaDisjunction(predicate, parameters, formulas);
 | 
			
		||||
	auto completedFormulaQuantified = buildCompletedFormulaQuantified(std::move(predicate), std::move(completedFormulaDisjunction));
 | 
			
		||||
 | 
			
		||||
	if (parameters.empty())
 | 
			
		||||
	{
 | 
			
		||||
		completedFormulas.emplace_back(std::move(completedFormulaQuantified));
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	auto completedFormula = ast::Formula::make<ast::ForAll>(std::move(parameters), std::move(completedFormulaQuantified));
 | 
			
		||||
	completedFormulas.emplace_back(std::move(completedFormula));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
void completeIntegrityConstraint(const ast::Formula &formula, std::vector<ast::Formula> &completedFormulas)
 | 
			
		||||
{
 | 
			
		||||
	auto &formula = formulas[formulaIndex];
 | 
			
		||||
	assert(formula.is<ast::Implies>());
 | 
			
		||||
	auto &implies = formula.get<ast::Implies>();
 | 
			
		||||
	assert(implies.consequent.is<ast::Boolean>());
 | 
			
		||||
	auto &boolean = implies.consequent.get<ast::Boolean>();
 | 
			
		||||
	assert(implies.consequent.get<ast::Boolean>().value == false);
 | 
			
		||||
 | 
			
		||||
	auto variables = ast::collectFreeVariables(implies.antecedent);
 | 
			
		||||
 | 
			
		||||
	// Implications of the form “T -> true” are useless
 | 
			
		||||
	if (boolean.value == true)
 | 
			
		||||
	{
 | 
			
		||||
		formulas.erase(formulas.begin() + formulaIndex);
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	auto argument = ast::Formula::make<ast::Not>(std::move(implies.antecedent));
 | 
			
		||||
	// TODO: avoid deep copies
 | 
			
		||||
	auto argument = ast::Formula::make<ast::Not>(ast::deepCopy(implies.antecedent));
 | 
			
		||||
 | 
			
		||||
	if (variables.empty())
 | 
			
		||||
	{
 | 
			
		||||
		formula = std::move(argument);
 | 
			
		||||
		formulaIndex++;
 | 
			
		||||
		completedFormulas.emplace_back(std::move(argument));
 | 
			
		||||
		return;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	formula = ast::Formula::make<ast::ForAll>(std::move(variables), std::move(argument));
 | 
			
		||||
	formulaIndex++;
 | 
			
		||||
	auto completedFormula = ast::Formula::make<ast::ForAll>(std::move(variables), std::move(argument));
 | 
			
		||||
	completedFormulas.emplace_back(std::move(completedFormula));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
void complete(std::vector<ast::Formula> &formulas)
 | 
			
		||||
{
 | 
			
		||||
	// Check whether formulas are in normal form
 | 
			
		||||
	for (const auto &formula : formulas)
 | 
			
		||||
	{
 | 
			
		||||
		if (!formula.is<ast::Implies>())
 | 
			
		||||
@@ -180,19 +151,58 @@ void complete(std::vector<ast::Formula> &formulas)
 | 
			
		||||
			throw std::runtime_error("cannot perform completion, only single predicates and Booleans supported as formula consequent currently");
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	for (std::size_t i = 0; i < formulas.size();)
 | 
			
		||||
	std::vector<const ast::Predicate *> predicates;
 | 
			
		||||
 | 
			
		||||
	for (const auto &formula : formulas)
 | 
			
		||||
		ast::collectPredicates(formula, predicates);
 | 
			
		||||
 | 
			
		||||
	std::sort(predicates.begin(), predicates.end(),
 | 
			
		||||
		[](const auto *lhs, const auto *rhs)
 | 
			
		||||
		{
 | 
			
		||||
			const auto order = std::strcmp(lhs->name.c_str(), rhs->name.c_str());
 | 
			
		||||
 | 
			
		||||
			if (order != 0)
 | 
			
		||||
				return order < 0;
 | 
			
		||||
 | 
			
		||||
			return lhs->arity() < rhs->arity();
 | 
			
		||||
		});
 | 
			
		||||
 | 
			
		||||
	std::vector<ast::Formula> completedFormulas;
 | 
			
		||||
 | 
			
		||||
	// Complete predicates
 | 
			
		||||
	for (const auto *predicate : predicates)
 | 
			
		||||
	{
 | 
			
		||||
		// Create the signature of the predicate
 | 
			
		||||
		ast::Predicate signature(std::string(predicate->name));
 | 
			
		||||
		signature.arguments.reserve(predicate->arguments.size());
 | 
			
		||||
 | 
			
		||||
		for (std::size_t i = 0; i < predicate->arguments.size(); i++)
 | 
			
		||||
		{
 | 
			
		||||
			auto variableName = std::string(AuxiliaryHeadVariablePrefix) + std::to_string(i + 1);
 | 
			
		||||
			signature.arguments.emplace_back(ast::Term::make<ast::Variable>(std::move(variableName), ast::Variable::Type::Reserved));
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		completePredicate(std::move(signature), formulas, completedFormulas);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Complete integrity constraints
 | 
			
		||||
	for (const auto &formula : formulas)
 | 
			
		||||
	{
 | 
			
		||||
		auto &formula = formulas[i];
 | 
			
		||||
		auto &implies = formula.get<ast::Implies>();
 | 
			
		||||
 | 
			
		||||
		if (implies.consequent.is<ast::Predicate>())
 | 
			
		||||
		{
 | 
			
		||||
			auto &predicate = implies.consequent.get<ast::Predicate>();
 | 
			
		||||
			completePredicate(predicate, formulas, i);
 | 
			
		||||
		}
 | 
			
		||||
		else if (implies.consequent.is<ast::Boolean>())
 | 
			
		||||
			completeBoolean(formulas, i);
 | 
			
		||||
		if (!implies.consequent.is<ast::Boolean>())
 | 
			
		||||
			continue;
 | 
			
		||||
 | 
			
		||||
		const auto &boolean = implies.consequent.get<ast::Boolean>();
 | 
			
		||||
 | 
			
		||||
		// Rules of the form “F -> #true” are useless
 | 
			
		||||
		if (boolean.value == true)
 | 
			
		||||
			continue;
 | 
			
		||||
 | 
			
		||||
		completeIntegrityConstraint(formula, completedFormulas);
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	std::swap(formulas, completedFormulas);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
////////////////////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
 
 | 
			
		||||
@@ -21,76 +21,127 @@ TEST_CASE("[completion] Rules are completed", "[completion]")
 | 
			
		||||
	SECTION("predicate in single rule head")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p :- q.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "(p <-> q)\n");
 | 
			
		||||
		CHECK(output.str() ==
 | 
			
		||||
			"(p <-> q)\n"
 | 
			
		||||
			"not q\n");
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	SECTION("predicate in multiple rule heads")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p :- q.\n"
 | 
			
		||||
		input <<
 | 
			
		||||
			"p :- q.\n"
 | 
			
		||||
			"p :- r.\n"
 | 
			
		||||
			"p :- s.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "(p <-> (q or r or s))\n");
 | 
			
		||||
		CHECK(output.str() ==
 | 
			
		||||
			"(p <-> (q or r or s))\n"
 | 
			
		||||
			"not q\n"
 | 
			
		||||
			"not r\n"
 | 
			
		||||
			"not s\n");
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	SECTION("multiple predicates are correctly separated")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p :- s.\n"
 | 
			
		||||
		input <<
 | 
			
		||||
			"p :- s.\n"
 | 
			
		||||
			"q :- t.\n"
 | 
			
		||||
			"p :- q.\n"
 | 
			
		||||
			"r :- t.\n"
 | 
			
		||||
			"q :- r.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "(p <-> (s or q))\n(q <-> (t or r))\n(r <-> t)\n");
 | 
			
		||||
		CHECK(output.str() ==
 | 
			
		||||
			"(p <-> (s or q))\n"
 | 
			
		||||
			"(q <-> (t or r))\n"
 | 
			
		||||
			"(r <-> t)\n"
 | 
			
		||||
			"not s\n"
 | 
			
		||||
			"not t\n");
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	SECTION("integrity constraints")
 | 
			
		||||
	{
 | 
			
		||||
		input << ":- q.\n"
 | 
			
		||||
			":- s(5).\n"
 | 
			
		||||
		input <<
 | 
			
		||||
			":- q.\n"
 | 
			
		||||
			":- r(5).\n"
 | 
			
		||||
			":- s(N).\n"
 | 
			
		||||
			"#false :- t.\n"
 | 
			
		||||
			"#false :- v(5).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
			"#false :- u(5).";
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "not q\nnot s(5)\nnot t\nnot v(5)\n");
 | 
			
		||||
		CHECK(output.str() ==
 | 
			
		||||
			"not q\n"
 | 
			
		||||
			"forall V1 not r(V1)\n"
 | 
			
		||||
			"forall V1 not s(V1)\n"
 | 
			
		||||
			"not t\n"
 | 
			
		||||
			"forall V1 not u(V1)\n"
 | 
			
		||||
			"not q\n"
 | 
			
		||||
			"not r(5)\n"
 | 
			
		||||
			"forall N not s(N)\n"
 | 
			
		||||
			"not t\n"
 | 
			
		||||
			"not u(5)\n");
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	SECTION("Booleans")
 | 
			
		||||
	{
 | 
			
		||||
		input <<
 | 
			
		||||
			"#true :- #true.\n"
 | 
			
		||||
			"#true :- #false.\n"
 | 
			
		||||
			"#false :- #true.\n"
 | 
			
		||||
			"#false :- #false.\n";
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() ==
 | 
			
		||||
			"not #true\n"
 | 
			
		||||
			"not #false\n");
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	SECTION("facts")
 | 
			
		||||
	{
 | 
			
		||||
		input << "q.\n"
 | 
			
		||||
		input <<
 | 
			
		||||
			"q.\n"
 | 
			
		||||
			"r.\n"
 | 
			
		||||
			"t :- #true.\n"
 | 
			
		||||
			"s :- #true.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
			"s :- #true.\n"
 | 
			
		||||
			"t :- #true.";
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "q\nr\nt\ns\n");
 | 
			
		||||
		CHECK(output.str() ==
 | 
			
		||||
			"q\n"
 | 
			
		||||
			"r\n"
 | 
			
		||||
			"s\n"
 | 
			
		||||
			"t\n");
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	SECTION("useless implications")
 | 
			
		||||
	{
 | 
			
		||||
		input << "#true :- p, q(N), t(1, 2).\n"
 | 
			
		||||
		input <<
 | 
			
		||||
			"#true :- p, q(N), t(1, 2).\n"
 | 
			
		||||
			"#true.\n"
 | 
			
		||||
			"h :- #false.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
			"v :- #false.";
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		// TODO: implement completion for unused predicates
 | 
			
		||||
		CHECK(output.str() == "not h\n");
 | 
			
		||||
		CHECK(output.str() ==
 | 
			
		||||
			"not p\n"
 | 
			
		||||
			"forall V1 not q(V1)\n"
 | 
			
		||||
			"forall V1, V2 not t(V1, V2)\n"
 | 
			
		||||
			"not v\n");
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	SECTION("example")
 | 
			
		||||
	{
 | 
			
		||||
		input << "{in(1..n, 1..r)}.\n"
 | 
			
		||||
		input <<
 | 
			
		||||
			"{in(1..n, 1..r)}.\n"
 | 
			
		||||
			"covered(I) :- in(I, S).\n"
 | 
			
		||||
			":- I = 1..n, not covered(I).\n"
 | 
			
		||||
			":- in(I, S), in(J, S), in(I + J, S).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "forall V1, V2 (in(V1, V2) <-> (V1 in 1..n and V2 in 1..r and in(V1, V2)))\n"
 | 
			
		||||
		CHECK(output.str() ==
 | 
			
		||||
			"forall V1 (covered(V1) <-> exists I, S (V1 = I and in(I, S)))\n"
 | 
			
		||||
			"forall V1, V2 (in(V1, V2) <-> (V1 in 1..n and V2 in 1..r and in(V1, V2)))\n"
 | 
			
		||||
			"forall I not (I in 1..n and not covered(I))\n"
 | 
			
		||||
			"forall I, S, J not (in(I, S) and in(J, S) and exists X5 (X5 in (I + J) and in(X5, S)))\n");
 | 
			
		||||
	}
 | 
			
		||||
 
 | 
			
		||||
@@ -21,7 +21,7 @@ TEST_CASE("[simplification] Rules are simplified correctly", "[simplification]")
 | 
			
		||||
	SECTION("example 1")
 | 
			
		||||
	{
 | 
			
		||||
		input << ":- in(I, S), in(J, S), in(I + J, S).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((in(I, S) and in(J, S) and exists X5 (X5 in (I + J) and in(X5, S))) -> #false)\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -29,7 +29,7 @@ TEST_CASE("[simplification] Rules are simplified correctly", "[simplification]")
 | 
			
		||||
	SECTION("example 2")
 | 
			
		||||
	{
 | 
			
		||||
		input << "covered(I) :- in(I, S).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 = I and in(I, S)) -> covered(V1))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -37,7 +37,7 @@ TEST_CASE("[simplification] Rules are simplified correctly", "[simplification]")
 | 
			
		||||
	SECTION("example 3")
 | 
			
		||||
	{
 | 
			
		||||
		input << ":- not covered(I), I = 1..n.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((not covered(I) and I in 1..n) -> #false)\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -45,7 +45,7 @@ TEST_CASE("[simplification] Rules are simplified correctly", "[simplification]")
 | 
			
		||||
	SECTION("comparisons")
 | 
			
		||||
	{
 | 
			
		||||
		input << ":- M > N.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "(M > N -> #false)\n");
 | 
			
		||||
	}
 | 
			
		||||
 
 | 
			
		||||
@@ -21,7 +21,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("simple example 1")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(1..5).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "(V1 in 1..5 -> p(V1))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -29,7 +29,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("simple example 2")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(N) :- N = 1..5.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in N and exists X1, X2 (X1 in N and X2 in 1..5 and X1 = X2)) -> p(V1))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -37,7 +37,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("simple example 3")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(N + 1) :- q(N).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in (N + 1) and exists X1 (X1 in N and q(X1))) -> p(V1))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -45,7 +45,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("n-ary head")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(N, 1, 2) :- N = 1..5.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in N and V2 in 1 and V3 in 2 and exists X1, X2 (X1 in N and X2 in 1..5 and X1 = X2)) -> p(V1, V2, V3))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -54,7 +54,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	{
 | 
			
		||||
		// TODO: check why order of disjunctive literals is inverted
 | 
			
		||||
		input << "q(3, N); p(N, 1, 2) :- N = 1..5.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in N and V2 in 1 and V3 in 2 and V4 in 3 and V5 in N and exists X1, X2 (X1 in N and X2 in 1..5 and X1 = X2)) -> (p(V1, V2, V3) or q(V4, V5)))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -63,7 +63,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	{
 | 
			
		||||
		// TODO: check why order of disjunctive literals is inverted
 | 
			
		||||
		input << "q(3, N), p(N, 1, 2) :- N = 1..5.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in N and V2 in 1 and V3 in 2 and V4 in 3 and V5 in N and exists X1, X2 (X1 in N and X2 in 1..5 and X1 = X2)) -> (p(V1, V2, V3) or q(V4, V5)))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -71,7 +71,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("escaping conflicting variable names")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(X1, V1, A1) :- q(X1), q(V1), q(A1).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in _X1 and V2 in _V1 and V3 in _A1 and exists X1 (X1 in _X1 and q(X1)) and exists X2 (X2 in _V1 and q(X2)) and exists X3 (X3 in _A1 and q(X3))) -> p(V1, V2, V3))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -79,7 +79,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("fact")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(42).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "(V1 in 42 -> p(V1))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -87,7 +87,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("0-ary fact")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "(#true -> p)\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -95,7 +95,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("function")
 | 
			
		||||
	{
 | 
			
		||||
		input << ":- not p(I), I = 1..n.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((exists X1 (X1 in I and not p(X1)) and exists X2, X3 (X2 in I and X3 in 1..n and X2 = X3)) -> #false)\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -103,7 +103,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("disjunctive fact (no arguments)")
 | 
			
		||||
	{
 | 
			
		||||
		input << "q; p.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "(#true -> (p or q))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -111,7 +111,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("disjunctive fact (arguments)")
 | 
			
		||||
	{
 | 
			
		||||
		input << "q; p(42).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "(V1 in 42 -> (p(V1) or q))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -119,7 +119,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("integrity constraint (no arguments)")
 | 
			
		||||
	{
 | 
			
		||||
		input << ":- p, q.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((p and q) -> #false)\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -127,7 +127,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("contradiction")
 | 
			
		||||
	{
 | 
			
		||||
		input << ":-.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "(#true -> #false)\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -135,7 +135,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("integrity constraint (arguments)")
 | 
			
		||||
	{
 | 
			
		||||
		input << ":- p(42), q.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((exists X1 (X1 in 42 and p(X1)) and q) -> #false)\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -143,7 +143,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("inf/sup")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(X, #inf) :- q(X, #sup).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in X and V2 in #inf and exists X1, X2 (X1 in X and X2 in #sup and q(X1, X2))) -> p(V1, V2))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -151,7 +151,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("strings")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(X, \"foo\") :- q(X, \"bar\").";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in X and V2 in \"foo\" and exists X1, X2 (X1 in X and X2 in \"bar\" and q(X1, X2))) -> p(V1, V2))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -159,7 +159,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("tuples")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(X, (1, 2, 3)) :- q(X, (4, 5)).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in X and V2 in (1, 2, 3) and exists X1, X2 (X1 in X and X2 in (4, 5) and q(X1, X2))) -> p(V1, V2))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -167,7 +167,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("1-ary tuples")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(X, (1,)) :- q(X, (2,)).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in X and V2 in (1,) and exists X1, X2 (X1 in X and X2 in (2,) and q(X1, X2))) -> p(V1, V2))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -175,7 +175,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("intervals")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(X, 1..10) :- q(X, 6..12).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in X and V2 in 1..10 and exists X1, X2 (X1 in X and X2 in 6..12 and q(X1, X2))) -> p(V1, V2))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -183,7 +183,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("comparisons")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(M, N, O, P) :- M < N, P != O.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in M and V2 in N and V3 in O and V4 in P and exists X1, X2 (X1 in M and X2 in N and X1 < X2) and exists X3, X4 (X3 in P and X4 in O and X3 != X4)) -> p(V1, V2, V3, V4))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -191,7 +191,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("single negation")
 | 
			
		||||
	{
 | 
			
		||||
		input << "not p(X, 1) :- not q(X, 2).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in X and V2 in 1 and exists X1, X2 (X1 in X and X2 in 2 and not q(X1, X2))) -> not p(V1, V2))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -200,7 +200,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	{
 | 
			
		||||
		// TODO: check why order of disjunctive literals is inverted
 | 
			
		||||
		input << "f; q(A1, A2); p(A3, r(A4)); g(g(A5)) :- g(A3), f, q(A4, A1), p(A2, A5).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in _A1 and V2 in _A2 and V3 in _A3 and V4 in r(_A4) and V5 in g(_A5)"
 | 
			
		||||
		        " and exists X1 (X1 in _A3 and g(X1)) and f and exists X2, X3 (X2 in _A4 and X3 in _A1 and q(X2, X3)) and exists X4, X5 (X4 in _A2 and X5 in _A5 and p(X4, X5)))"
 | 
			
		||||
@@ -210,7 +210,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("nested functions")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(q(s(t(X1))), u(X2)) :- u(v(w(X2)), z(X1)).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in q(s(t(_X1))) and V2 in u(_X2) and exists X1, X2 (X1 in v(w(_X2)) and X2 in z(_X1) and u(X1, X2))) -> p(V1, V2))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -218,7 +218,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("choice rule (simple)")
 | 
			
		||||
	{
 | 
			
		||||
		input << "{p}.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "(p -> p)\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -226,7 +226,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("choice rule (two elements)")
 | 
			
		||||
	{
 | 
			
		||||
		input << "{p; q}.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "(p -> p)\n(q -> q)\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -234,7 +234,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("choice rule (n-ary elements)")
 | 
			
		||||
	{
 | 
			
		||||
		input << "{p(1..3, N); q(2..4)}.";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in 1..3 and V2 in N and V3 in 2..4 and p(V1, V2)) -> p(V1, V2))\n((V1 in 1..3 and V2 in N and V3 in 2..4 and q(V3)) -> q(V3))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -242,7 +242,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("choice rule with body")
 | 
			
		||||
	{
 | 
			
		||||
		input << "{p(M, N); q(P)} :- s(M, N, P).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in M and V2 in N and V3 in P and exists X1, X2, X3 (X1 in M and X2 in N and X3 in P and s(X1, X2, X3)) and p(V1, V2)) -> p(V1, V2))\n((V1 in M and V2 in N and V3 in P and exists X1, X2, X3 (X1 in M and X2 in N and X3 in P and s(X1, X2, X3)) and q(V3)) -> q(V3))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -250,7 +250,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("choice rule with negation")
 | 
			
		||||
	{
 | 
			
		||||
		input << "{not p(X, 1)} :- not q(X, 2).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in X and V2 in 1 and exists X1, X2 (X1 in X and X2 in 2 and not q(X1, X2)) and not p(V1, V2)) -> not p(V1, V2))\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -258,7 +258,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("choice rule with negation (two elements)")
 | 
			
		||||
	{
 | 
			
		||||
		input << "{not p(X, 1); not s} :- not q(X, 2).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in X and V2 in 1 and exists X1, X2 (X1 in X and X2 in 2 and not q(X1, X2)) and not p(V1, V2)) -> not p(V1, V2))\n((V1 in X and V2 in 1 and exists X1, X2 (X1 in X and X2 in 2 and not q(X1, X2)) and not s) -> not s)\n");
 | 
			
		||||
	}
 | 
			
		||||
@@ -266,7 +266,7 @@ TEST_CASE("[translation] Rules are translated correctly", "[translation]")
 | 
			
		||||
	SECTION("anonymous variables")
 | 
			
		||||
	{
 | 
			
		||||
		input << "p(_, _) :- q(_, _).";
 | 
			
		||||
		REQUIRE_NOTHROW(anthem::translate("input", input, context));
 | 
			
		||||
		anthem::translate("input", input, context);
 | 
			
		||||
 | 
			
		||||
		CHECK(output.str() == "((V1 in A1 and V2 in A2 and exists X1, X2 (X1 in A3 and X2 in A4 and q(X1, X2))) -> p(V1, V2))\n");
 | 
			
		||||
	}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user