Compare commits

...

12 Commits

Author SHA1 Message Date
Patrick Lühne 285fa08e5a
Version bump for release 0.1.8 RC 1 2018-04-10 00:19:55 +02:00
Patrick Lühne dfffdcfce6
Add new simplification rule
This adds the rule “(not F or G) === (F -> G)” to the simplification
rule tableau.
2018-04-09 23:48:04 +02:00
Patrick Lühne 4967576b6c
Add new simplification rule
This adds the rule “(not (F and G)) === (not F or not G)” to the
simplification rule tableau.
2018-04-09 23:39:29 +02:00
Patrick Lühne 1c5851441d
Add new simplification rule
This adds the rule “not not F === F” to the simplification rule tableau.
2018-04-09 23:36:16 +02:00
Patrick Lühne b18ddcc575
Add new simplification rule
This adds the rule “(F <-> (F and G)) === (F -> G)” to the
simplification rule tableau.
2018-04-09 23:27:38 +02:00
Patrick Lühne 00ab975c2d
Iteratively apply simplification tableau rules
With this change, the tableau rules for simplifying formula are applied
iteratively until a fixpoint is reached.
2018-04-08 22:24:14 +02:00
Patrick Lühne e01b5dc561
Move simplification rule to tableau
This moves the rule “[primitive A] in [primitive B] === A = B” to the
simplification rule tableau.
2018-04-08 22:24:14 +02:00
Patrick Lühne 91529b84aa
Move simplification rule to tableau
This moves the rule “exists () (F) === F” to the simplification rule
tableau.
2018-04-08 22:24:14 +02:00
Patrick Lühne 1cbfd335a1
Move simplification rule to tableau
This moves the rule “[conjunction of only F] === F” to the
simplification rule tableau.
2018-04-08 22:24:14 +02:00
Patrick Lühne a86e978a5a
Move simplification rule to tableau
This moves the rule “exists ... ([#true/#false]) === [#true/#false]” to
the simplification rule tableau along with “[empty conjunction] ===
2018-04-08 22:24:14 +02:00
Patrick Lühne 5eb3ed5681
Move simplification rule to tableau
This moves the rule “exists X (X = t and F(X)) === exists () (F(t))” to
the simplification rule tableau.
2018-04-08 22:24:14 +02:00
Patrick Lühne 3d0266136c
Implement simplification rule tableau
This implements a tableau containing simplification rules that can be
iteratively applied to input formulas until they remain unchanged.

First, this moves the rule “exists X (X = Y) === #true” to the tableau
as a reference implementation.
2018-04-08 22:24:10 +02:00
10 changed files with 992 additions and 90 deletions

View File

@ -1,6 +1,10 @@
# Change Log # Change Log
## (unreleased) ## 0.1.8 RC 1 (2018-04-10)
### Features
* more, advanced simplification rules
## 0.1.7 (2018-04-08) ## 0.1.7 (2018-04-08)

View File

@ -70,7 +70,7 @@ int main(int argc, char **argv)
if (version) if (version)
{ {
std::cout << "anthem version 0.1.7+git" << std::endl; std::cout << "anthem version 0.1.8-rc.1" << std::endl;
return EXIT_SUCCESS; return EXIT_SUCCESS;
} }

View File

@ -3,3 +3,5 @@ covered(I) :- in(I, S).
:- I = 1..n, not covered(I). :- I = 1..n, not covered(I).
:- in(I, S), in(J, S), in(I + J, S). :- in(I, S), in(J, S), in(I + J, S).
#show in/2.

417
include/anthem/Equality.h Normal file
View File

@ -0,0 +1,417 @@
#ifndef __ANTHEM__EQUALITY_H
#define __ANTHEM__EQUALITY_H
#include <anthem/AST.h>
#include <anthem/ASTUtils.h>
namespace anthem
{
namespace ast
{
////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Equality
//
////////////////////////////////////////////////////////////////////////////////////////////////////
// TODO: move to separate class
enum class Tristate
{
True,
False,
Unknown,
};
////////////////////////////////////////////////////////////////////////////////////////////////////
Tristate equal(const Formula &lhs, const Formula &rhs);
Tristate equal(const Term &lhs, const Term &rhs);
////////////////////////////////////////////////////////////////////////////////////////////////////
struct FormulaEqualityVisitor
{
Tristate visit(const And &and_, const Formula &otherFormula)
{
if (!otherFormula.is<And>())
return Tristate::Unknown;
const auto &otherAnd = otherFormula.get<And>();
for (const auto &argument : and_.arguments)
{
const auto match = std::find_if(
otherAnd.arguments.cbegin(), otherAnd.arguments.cend(),
[&](const auto &otherArgument)
{
return equal(argument, otherArgument) == Tristate::True;
});
if (match == otherAnd.arguments.cend())
return Tristate::Unknown;
}
for (const auto &otherArgument : otherAnd.arguments)
{
const auto match = std::find_if(
and_.arguments.cbegin(), and_.arguments.cend(),
[&](const auto &argument)
{
return equal(otherArgument, argument) == Tristate::True;
});
if (match == and_.arguments.cend())
return Tristate::Unknown;
}
return Tristate::True;
}
Tristate visit(const Biconditional &biconditional, const Formula &otherFormula)
{
if (!otherFormula.is<Biconditional>())
return Tristate::Unknown;
const auto &otherBiconditional = otherFormula.get<Biconditional>();
if (equal(biconditional.left, otherBiconditional.left) == Tristate::True
&& equal(biconditional.right, otherBiconditional.right) == Tristate::True)
{
return Tristate::True;
}
if (equal(biconditional.left, otherBiconditional.right) == Tristate::True
&& equal(biconditional.right, otherBiconditional.left) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const Boolean &boolean, const Formula &otherFormula)
{
if (!otherFormula.is<Boolean>())
return Tristate::Unknown;
const auto &otherBoolean = otherFormula.get<Boolean>();
return (boolean.value == otherBoolean.value)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Comparison &comparison, const Formula &otherFormula)
{
if (!otherFormula.is<Comparison>())
return Tristate::Unknown;
const auto &otherComparison = otherFormula.get<Comparison>();
if (comparison.operator_ != otherComparison.operator_)
return Tristate::Unknown;
if (equal(comparison.left, otherComparison.left) == Tristate::True
&& equal(comparison.right, otherComparison.right) == Tristate::True)
{
return Tristate::True;
}
// Only = and != are commutative operators, all others dont need to be checked with exchanged arguments
if (comparison.operator_ != Comparison::Operator::Equal
&& comparison.operator_ != Comparison::Operator::NotEqual)
{
return Tristate::Unknown;
}
if (equal(comparison.left, otherComparison.right) == Tristate::True
&& equal(comparison.right, otherComparison.left) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const Exists &, const Formula &otherFormula)
{
if (!otherFormula.is<Exists>())
return Tristate::Unknown;
// TODO: implement stronger check
return Tristate::Unknown;
}
Tristate visit(const ForAll &, const Formula &otherFormula)
{
if (!otherFormula.is<ForAll>())
return Tristate::Unknown;
// TODO: implement stronger check
return Tristate::Unknown;
}
Tristate visit(const Implies &implies, const Formula &otherFormula)
{
if (!otherFormula.is<Implies>())
return Tristate::Unknown;
const auto &otherImplies = otherFormula.get<Implies>();
if (equal(implies.antecedent, otherImplies.antecedent) == Tristate::True
&& equal(implies.consequent, otherImplies.consequent) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const In &in, const Formula &otherFormula)
{
if (!otherFormula.is<In>())
return Tristate::Unknown;
const auto &otherIn = otherFormula.get<In>();
if (equal(in.element, otherIn.element) == Tristate::True
&& equal(in.set, otherIn.set) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const Not &not_, const Formula &otherFormula)
{
if (!otherFormula.is<Not>())
return Tristate::Unknown;
const auto &otherNot = otherFormula.get<Not>();
return equal(not_.argument, otherNot.argument);
}
Tristate visit(const Or &or_, const Formula &otherFormula)
{
if (!otherFormula.is<Or>())
return Tristate::Unknown;
const auto &otherOr = otherFormula.get<Or>();
for (const auto &argument : or_.arguments)
{
const auto match = std::find_if(
otherOr.arguments.cbegin(), otherOr.arguments.cend(),
[&](const auto &otherArgument)
{
return equal(argument, otherArgument) == Tristate::True;
});
if (match == otherOr.arguments.cend())
return Tristate::Unknown;
}
for (const auto &otherArgument : otherOr.arguments)
{
const auto match = std::find_if(
or_.arguments.cbegin(), or_.arguments.cend(),
[&](const auto &argument)
{
return equal(otherArgument, argument) == Tristate::True;
});
if (match == or_.arguments.cend())
return Tristate::Unknown;
}
return Tristate::True;
}
Tristate visit(const Predicate &predicate, const Formula &otherFormula)
{
if (!otherFormula.is<Predicate>())
return Tristate::Unknown;
const auto &otherPredicate = otherFormula.get<Predicate>();
if (!matches(predicate, otherPredicate))
return Tristate::False;
assert(predicate.arguments.size() == otherPredicate.arguments.size());
for (size_t i = 0; i < predicate.arguments.size(); i++)
if (equal(predicate.arguments[i], otherPredicate.arguments[i]) != Tristate::True)
return Tristate::Unknown;
return Tristate::True;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct TermEqualityVisitor
{
Tristate visit(const BinaryOperation &binaryOperation, const Term &otherTerm)
{
if (!otherTerm.is<BinaryOperation>())
return Tristate::Unknown;
const auto &otherBinaryOperation = otherTerm.get<BinaryOperation>();
if (binaryOperation.operator_ != otherBinaryOperation.operator_)
return Tristate::Unknown;
if (equal(binaryOperation.left, otherBinaryOperation.left) == Tristate::True
&& equal(binaryOperation.right, otherBinaryOperation.right) == Tristate::True)
{
return Tristate::True;
}
// Only + and * are commutative operators, all others dont need to be checked with exchanged arguments
if (binaryOperation.operator_ != BinaryOperation::Operator::Plus
&& binaryOperation.operator_ != BinaryOperation::Operator::Multiplication)
{
return Tristate::Unknown;
}
if (equal(binaryOperation.left, binaryOperation.right) == Tristate::True
&& equal(binaryOperation.right, binaryOperation.left) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const Boolean &boolean, const Term &otherTerm)
{
if (!otherTerm.is<Boolean>())
return Tristate::Unknown;
const auto &otherBoolean = otherTerm.get<Boolean>();
return (boolean.value == otherBoolean.value)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Constant &constant, const Term &otherTerm)
{
if (!otherTerm.is<Constant>())
return Tristate::Unknown;
const auto &otherConstant = otherTerm.get<Constant>();
return (constant.name == otherConstant.name)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Function &function, const Term &otherTerm)
{
if (!otherTerm.is<Function>())
return Tristate::Unknown;
const auto &otherFunction = otherTerm.get<Function>();
if (function.name != otherFunction.name)
return Tristate::False;
if (function.arguments.size() != otherFunction.arguments.size())
return Tristate::False;
for (size_t i = 0; i < function.arguments.size(); i++)
if (equal(function.arguments[i], otherFunction.arguments[i]) != Tristate::True)
return Tristate::Unknown;
return Tristate::True;
}
Tristate visit(const Integer &integer, const Term &otherTerm)
{
if (!otherTerm.is<Integer>())
return Tristate::Unknown;
const auto &otherInteger = otherTerm.get<Integer>();
return (integer.value == otherInteger.value)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Interval &interval, const Term &otherTerm)
{
if (!otherTerm.is<Interval>())
return Tristate::Unknown;
const auto &otherInterval = otherTerm.get<Interval>();
if (equal(interval.from, otherInterval.from) != Tristate::True)
return Tristate::Unknown;
if (equal(interval.to, otherInterval.to) != Tristate::True)
return Tristate::Unknown;
return Tristate::True;
}
Tristate visit(const SpecialInteger &specialInteger, const Term &otherTerm)
{
if (!otherTerm.is<SpecialInteger>())
return Tristate::Unknown;
const auto &otherSpecialInteger = otherTerm.get<SpecialInteger>();
return (specialInteger.type == otherSpecialInteger.type)
? Tristate::True
: Tristate::False;
}
Tristate visit(const String &string, const Term &otherTerm)
{
if (!otherTerm.is<String>())
return Tristate::Unknown;
const auto &otherString = otherTerm.get<String>();
return (string.text == otherString.text)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Variable &variable, const Term &otherTerm)
{
if (!otherTerm.is<Variable>())
return Tristate::Unknown;
const auto &otherVariable = otherTerm.get<Variable>();
return (variable.declaration == otherVariable.declaration)
? Tristate::True
: Tristate::False;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
Tristate equal(const Formula &lhs, const Formula &rhs)
{
return lhs.accept(FormulaEqualityVisitor(), rhs);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
Tristate equal(const Term &lhs, const Term &rhs)
{
return lhs.accept(TermEqualityVisitor(), rhs);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
}
}
#endif

View File

@ -12,6 +12,14 @@ namespace anthem
// //
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
enum class SimplificationResult
{
Simplified,
Unchanged,
};
////////////////////////////////////////////////////////////////////////////////////////////////////
void simplify(ast::Formula &formula); void simplify(ast::Formula &formula);
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,198 @@
#ifndef __ANTHEM__SIMPLIFICATION_VISITORS_H
#define __ANTHEM__SIMPLIFICATION_VISITORS_H
#include <anthem/AST.h>
#include <anthem/Simplification.h>
namespace anthem
{
namespace ast
{
////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Simplification Visitor
//
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class T>
struct FormulaSimplificationVisitor
{
template <class... Arguments>
SimplificationResult visit(And &and_, Formula &formula, Arguments &&... arguments)
{
for (auto &argument : and_.arguments)
if (argument.accept(*this, argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Biconditional &biconditional, Formula &formula, Arguments &&... arguments)
{
if (biconditional.left.accept(*this, biconditional.left, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
if (biconditional.right.accept(*this, biconditional.right, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Boolean &, Formula &formula, Arguments &&... arguments)
{
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Comparison &, Formula &formula, Arguments &&... arguments)
{
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Exists &exists, Formula &formula, Arguments &&... arguments)
{
if (exists.argument.accept(*this, exists.argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(ForAll &forAll, Formula &formula, Arguments &&... arguments)
{
if (forAll.argument.accept(*this, forAll.argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Implies &implies, Formula &formula, Arguments &&... arguments)
{
if (implies.antecedent.accept(*this, implies.antecedent, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
if (implies.consequent.accept(*this, implies.consequent, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(In &, Formula &formula, Arguments &&... arguments)
{
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Not &not_, Formula &formula, Arguments &&... arguments)
{
if (not_.argument.accept(*this, not_.argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Or &or_, Formula &formula, Arguments &&... arguments)
{
for (auto &argument : or_.arguments)
if (argument.accept(*this, argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Predicate &, Formula &formula, Arguments &&... arguments)
{
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class T, class SimplificationResult = void>
struct TermSimplificationVisitor
{
template <class... Arguments>
SimplificationResult visit(BinaryOperation &binaryOperation, Term &term, Arguments &&... arguments)
{
if (binaryOperation.left.accept(*this, binaryOperation.left, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
if (binaryOperation.right.accept(*this, binaryOperation.right, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Boolean &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Constant &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Function &function, Term &term, Arguments &&... arguments)
{
for (auto &argument : function.arguments)
if (argument.accept(*this, argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Integer &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Interval &interval, Term &term, Arguments &&... arguments)
{
if (interval.from.accept(*this, interval.from, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
if (interval.to.accept(*this, interval.to, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(SpecialInteger &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(String &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Variable &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
}
}
#endif

View File

@ -3,7 +3,9 @@
#include <optional> #include <optional>
#include <anthem/ASTCopy.h> #include <anthem/ASTCopy.h>
#include <anthem/ASTVisitors.h> #include <anthem/Equality.h>
#include <anthem/output/AST.h>
#include <anthem/SimplificationVisitors.h>
namespace anthem namespace anthem
{ {
@ -97,18 +99,65 @@ struct ReplaceVariableInFormulaVisitor : public ast::RecursiveFormulaVisitor<Rep
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// Simplifies exists statements by using the equivalence “exists X (X = t and F(X))” == “F(t)” template<class SimplificationRule>
// The exists statement has to be of the form “exists <variables> <conjunction>” SimplificationResult simplify(ast::Formula &formula)
void simplify(ast::Exists &exists, ast::Formula &formula)
{ {
// Simplify formulas like “exists X (X = Y)” to “#true” return SimplificationRule::apply(formula);
// TODO: check that this covers all cases }
if (exists.argument.is<ast::Comparison>())
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class FirstSimplificationRule, class SecondSimplificationRule, class... OtherSimplificationRules>
SimplificationResult simplify(ast::Formula &formula)
{
if (simplify<FirstSimplificationRule>(formula) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return simplify<SecondSimplificationRule, OtherSimplificationRules...>(formula);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleExistsWithoutQuantifiedVariables
{
static constexpr const auto Description = "exists () (F) === F";
static SimplificationResult apply(ast::Formula &formula)
{ {
if (!formula.is<ast::Exists>())
return SimplificationResult::Unchanged;
auto &exists = formula.get<ast::Exists>();
if (!exists.variables.empty())
return SimplificationResult::Unchanged;
formula = std::move(exists.argument);
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleTrivialAssignmentInExists
{
static constexpr const auto Description = "exists X (X = Y) === #true";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Exists>())
return SimplificationResult::Unchanged;
const auto &exists = formula.get<ast::Exists>();
if (!exists.argument.is<ast::Comparison>())
return SimplificationResult::Unchanged;
const auto &comparison = exists.argument.get<ast::Comparison>(); const auto &comparison = exists.argument.get<ast::Comparison>();
if (comparison.operator_ != ast::Comparison::Operator::Equal) if (comparison.operator_ != ast::Comparison::Operator::Equal)
return; return SimplificationResult::Unchanged;
const auto matchingAssignment = std::find_if(exists.variables.cbegin(), exists.variables.cend(), const auto matchingAssignment = std::find_if(exists.variables.cbegin(), exists.variables.cend(),
[&](const auto &variableDeclaration) [&](const auto &variableDeclaration)
@ -117,107 +166,331 @@ void simplify(ast::Exists &exists, ast::Formula &formula)
|| matchesVariableDeclaration(comparison.right, *variableDeclaration); || matchesVariableDeclaration(comparison.right, *variableDeclaration);
}); });
if (matchingAssignment != exists.variables.cend()) if (matchingAssignment == exists.variables.cend())
formula = ast::Formula::make<ast::Boolean>(true); return SimplificationResult::Unchanged;
return; formula = ast::Formula::make<ast::Boolean>(true);
return SimplificationResult::Simplified;
} }
};
if (!exists.argument.is<ast::And>()) ////////////////////////////////////////////////////////////////////////////////////////////////////
return;
auto &conjunction = exists.argument.get<ast::And>(); struct SimplificationRuleAssignmentInExists
auto &arguments = conjunction.arguments; {
static constexpr const auto Description = "exists X (X = t and F(X)) === exists () (F(t))";
// Simplify formulas of type “exists X (X = t and F(X))” to “F(t)” static SimplificationResult apply(ast::Formula &formula)
for (auto i = exists.variables.begin(); i != exists.variables.end();)
{ {
const auto &variableDeclaration = **i; if (!formula.is<ast::Exists>())
return SimplificationResult::Unchanged;
bool wasVariableReplaced = false; auto &exists = formula.get<ast::Exists>();
// TODO: refactor if (!exists.argument.is<ast::And>())
for (auto j = arguments.begin(); j != arguments.end(); j++) return SimplificationResult::Unchanged;
auto &and_ = exists.argument.get<ast::And>();
auto &arguments = and_.arguments;
auto simplificationResult = SimplificationResult::Unchanged;
for (auto i = exists.variables.begin(); i != exists.variables.end();)
{ {
auto &argument = *j; const auto &variableDeclaration = **i;
// Find term that is equivalent to the given variable
auto assignedTerm = extractAssignedTerm(argument, variableDeclaration);
if (!assignedTerm) bool wasVariableReplaced = false;
continue;
// Replace all occurrences of the variable with the equivalent term // TODO: refactor
for (auto k = arguments.begin(); k != arguments.end(); k++) for (auto j = arguments.begin(); j != arguments.end(); j++)
{ {
if (k == j) auto &argument = *j;
// Find term that is equivalent to the given variable
auto assignedTerm = extractAssignedTerm(argument, variableDeclaration);
if (!assignedTerm)
continue; continue;
auto &otherArgument = *k; // Replace all occurrences of the variable with the equivalent term
otherArgument.accept(ReplaceVariableInFormulaVisitor(), otherArgument, variableDeclaration, assignedTerm.value()); for (auto k = arguments.begin(); k != arguments.end(); k++)
{
if (k == j)
continue;
auto &otherArgument = *k;
otherArgument.accept(ReplaceVariableInFormulaVisitor(), otherArgument, variableDeclaration, assignedTerm.value());
}
arguments.erase(j);
wasVariableReplaced = true;
simplificationResult = SimplificationResult::Simplified;
break;
} }
arguments.erase(j); if (wasVariableReplaced)
wasVariableReplaced = true; {
break; i = exists.variables.erase(i);
continue;
}
i++;
} }
if (wasVariableReplaced) return simplificationResult;
{
i = exists.variables.erase(i);
continue;
}
i++;
} }
};
// If there are no arguments left, we had a formula of the form “exists X1, ..., Xn (X1 = Y1 and ... and Xn = Yn)” ////////////////////////////////////////////////////////////////////////////////////////////////////
// Such exists statements are useless and can be safely replaced with “#true”
if (arguments.empty()) struct SimplificationRuleEmptyConjunction
{
static constexpr const auto Description = "[empty conjunction] === #true";
static SimplificationResult apply(ast::Formula &formula)
{ {
if (!formula.is<ast::And>())
return SimplificationResult::Unchanged;
auto &and_ = formula.get<ast::And>();
if (!and_.arguments.empty())
return SimplificationResult::Unchanged;
formula = ast::Formula::make<ast::Boolean>(true); formula = ast::Formula::make<ast::Boolean>(true);
return;
return SimplificationResult::Simplified;
} }
};
// If the argument now is a conjunction with just one element, directly replace the input formula with the argument ////////////////////////////////////////////////////////////////////////////////////////////////////
if (arguments.size() == 1)
exists.argument = std::move(arguments.front());
// If there are still remaining variables, simplification is over struct SimplificationRuleOneElementConjunction
if (!exists.variables.empty()) {
return; static constexpr const auto Description = "[conjunction of only F] === F";
assert(!arguments.empty()); static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::And>())
return SimplificationResult::Unchanged;
// If there is more than one element in the conjunction, replace the input formula with the conjunction auto &and_ = formula.get<ast::And>();
formula = std::move(exists.argument);
} if (and_.arguments.size() != 1)
return SimplificationResult::Unchanged;
formula = std::move(and_.arguments.front());
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleTrivialExists
{
static constexpr const auto Description = "exists ... ([#true/#false]) === [#true/#false]";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Exists>())
return SimplificationResult::Unchanged;
auto &exists = formula.get<ast::Exists>();
if (!exists.argument.is<ast::Boolean>())
return SimplificationResult::Unchanged;
formula = std::move(exists.argument);
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleInWithPrimitiveArguments
{
static constexpr const auto Description = "[primitive A] in [primitive B] === A = B";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::In>())
return SimplificationResult::Unchanged;
auto &in = formula.get<ast::In>();
assert(ast::isPrimitive(in.element));
if (!ast::isPrimitive(in.element) || !ast::isPrimitive(in.set))
return SimplificationResult::Unchanged;
formula = ast::Comparison(ast::Comparison::Operator::Equal, std::move(in.element), std::move(in.set));
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleSubsumptionInBiconditionals
{
static constexpr const auto Description = "(F <-> (F and G)) === (F -> G)";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Biconditional>())
return SimplificationResult::Unchanged;
auto &biconditional = formula.get<ast::Biconditional>();
const auto leftIsPredicate = biconditional.left.is<ast::Predicate>();
const auto rightIsPredicate = biconditional.right.is<ast::Predicate>();
const auto leftIsAnd = biconditional.left.is<ast::And>();
const auto rightIsAnd = biconditional.right.is<ast::And>();
if (!(leftIsPredicate && rightIsAnd) && !(rightIsPredicate && leftIsAnd))
return SimplificationResult::Unchanged;
auto &predicateSide = (leftIsPredicate ? biconditional.left : biconditional.right);
auto &andSide = (leftIsPredicate ? biconditional.right : biconditional.left);
auto &and_ = andSide.get<ast::And>();
const auto matchingPredicate =
std::find_if(and_.arguments.cbegin(), and_.arguments.cend(),
[&](const auto &argument)
{
return (ast::equal(predicateSide, argument) == ast::Tristate::True);
});
if (matchingPredicate == and_.arguments.cend())
return SimplificationResult::Unchanged;
and_.arguments.erase(matchingPredicate);
formula = ast::Formula::make<ast::Implies>(std::move(predicateSide), std::move(andSide));
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleDoubleNegation
{
static constexpr const auto Description = "not not F === F";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Not>())
return SimplificationResult::Unchanged;
auto &not_ = formula.get<ast::Not>();
if (!not_.argument.is<ast::Not>())
return SimplificationResult::Unchanged;
auto &notNot = not_.argument.get<ast::Not>();
formula = std::move(notNot.argument);
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleDeMorganForConjunctions
{
static constexpr const auto Description = "(not (F and G)) === (not F or not G)";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Not>())
return SimplificationResult::Unchanged;
auto &not_ = formula.get<ast::Not>();
if (!not_.argument.is<ast::And>())
return SimplificationResult::Unchanged;
auto &and_ = not_.argument.get<ast::And>();
for (auto &argument : and_.arguments)
argument = ast::Formula::make<ast::Not>(std::move(argument));
formula = ast::Formula::make<ast::Or>(std::move(and_.arguments));
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleImplicationFromDisjunction
{
static constexpr const auto Description = "(not F or G) === (F -> G)";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Or>())
return SimplificationResult::Unchanged;
auto &or_ = formula.get<ast::Or>();
if (or_.arguments.size() != 2)
return SimplificationResult::Unchanged;
const auto leftIsNot = or_.arguments[0].is<ast::Not>();
const auto rightIsNot = or_.arguments[1].is<ast::Not>();
if (leftIsNot == rightIsNot)
return SimplificationResult::Unchanged;
auto &negativeSide = leftIsNot ? or_.arguments[0] : or_.arguments[1];
auto &positiveSide = leftIsNot ? or_.arguments[1] : or_.arguments[0];
assert(negativeSide.is<ast::Not>());
assert(!positiveSide.is<ast::Not>());
auto &negativeSideArgument = negativeSide.get<ast::Not>().argument;
formula = ast::Formula::make<ast::Implies>(std::move(negativeSideArgument), std::move(positiveSide));
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
const auto simplifyWithDefaultRules =
simplify
<
SimplificationRuleDoubleNegation,
SimplificationRuleTrivialAssignmentInExists,
SimplificationRuleAssignmentInExists,
SimplificationRuleEmptyConjunction,
SimplificationRuleTrivialExists,
SimplificationRuleOneElementConjunction,
SimplificationRuleExistsWithoutQuantifiedVariables,
SimplificationRuleInWithPrimitiveArguments,
SimplificationRuleSubsumptionInBiconditionals,
SimplificationRuleDeMorganForConjunctions,
SimplificationRuleImplicationFromDisjunction
>;
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
// Performs the different simplification techniques // Performs the different simplification techniques
struct SimplifyFormulaVisitor : public ast::RecursiveFormulaVisitor<SimplifyFormulaVisitor> struct SimplifyFormulaVisitor : public ast::FormulaSimplificationVisitor<SimplifyFormulaVisitor>
{ {
// Forward exists statements to the dedicated simplification function
static void accept(ast::Exists &exists, ast::Formula &formula)
{
simplify(exists, formula);
}
// Simplify formulas of type “A in B” to “A = B” if A and B are primitive
static void accept(ast::In &in, ast::Formula &formula)
{
assert(ast::isPrimitive(in.element));
if (!ast::isPrimitive(in.element) || !ast::isPrimitive(in.set))
return;
formula = ast::Comparison(ast::Comparison::Operator::Equal, std::move(in.element), std::move(in.set));
}
// Do nothing for all other types of expressions // Do nothing for all other types of expressions
template<class T> static SimplificationResult accept(ast::Formula &formula)
static void accept(T &, ast::Formula &)
{ {
return simplifyWithDefaultRules(formula);
} }
}; };
@ -225,7 +498,7 @@ struct SimplifyFormulaVisitor : public ast::RecursiveFormulaVisitor<SimplifyForm
void simplify(ast::Formula &formula) void simplify(ast::Formula &formula)
{ {
formula.accept(SimplifyFormulaVisitor(), formula); while (formula.accept(SimplifyFormulaVisitor(), formula) == SimplificationResult::Simplified);
} }
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -152,9 +152,9 @@ TEST_CASE("[completion] Rules are completed", "[completion]")
CHECK(output.str() == CHECK(output.str() ==
"forall V1 (covered(V1) <-> exists U1 in(V1, U1))\n" "forall V1 (covered(V1) <-> exists U1 in(V1, U1))\n"
"forall V2, V3 (in(V2, V3) <-> (V2 in 1..n and V3 in 1..r and in(V2, V3)))\n" "forall V2, V3 (in(V2, V3) -> (V2 in 1..n and V3 in 1..r))\n"
"forall U2 not (U2 in 1..n and not covered(U2))\n" "forall U2 (U2 in 1..n -> covered(U2))\n"
"forall U3, U4, U5 not (in(U3, U4) and in(U5, U4) and exists X1 (X1 in (U3 + U5) and in(X1, U4)))\n"); "forall U3, U4, U5 (not in(U3, U4) or not in(U5, U4) or not exists X1 (X1 in (U3 + U5) and in(X1, U4)))\n");
} }
SECTION("binary operations with multiple variables") SECTION("binary operations with multiple variables")

View File

@ -103,9 +103,10 @@ TEST_CASE("[hidden predicate elimination] Hidden predicates are correctly elimin
"#show a/1."; "#show a/1.";
anthem::translate("input", input, context); anthem::translate("input", input, context);
// TODO: simplify further
CHECK(output.str() == CHECK(output.str() ==
"forall V1 (a(V1) <-> not d(V1))\n" "forall V1 (a(V1) <-> not d(V1))\n"
"forall V2 (d(V2) <-> not not d(V2))\n" "forall V2 (d(V2) <-> d(V2))\n"
"forall V3 (e(V3) <-> e(V3))\n"); "forall V3 (e(V3) <-> e(V3))\n");
} }
@ -164,12 +165,11 @@ TEST_CASE("[hidden predicate elimination] Hidden predicates are correctly elimin
"#show t/0."; "#show t/0.";
anthem::translate("input", input, context); anthem::translate("input", input, context);
// TODO: simplify further
CHECK(output.str() == CHECK(output.str() ==
"(s <-> (not #false and s))\n" "(s -> not #false)\n"
"(t <-> (not #false and t))\n" "(t -> not #false)\n"
"not (s and not t)\n" "(s -> t)\n"
"not (not #false and not #false and #false)\n"); "(#false or #false or not #false)\n");
} }
SECTION("predicate with more than one argument is hidden correctly") SECTION("predicate with more than one argument is hidden correctly")

View File

@ -55,8 +55,8 @@ TEST_CASE("[placeholders] Programs with placeholders are correctly completed", "
anthem::translate("input", input, context); anthem::translate("input", input, context);
CHECK(output.str() == CHECK(output.str() ==
"forall V1, V2 (color(V1, V2) <-> (vertex(V1) and color(V2) and color(V1, V2)))\n" "forall V1, V2 (color(V1, V2) -> (vertex(V1) and color(V2)))\n"
"forall U1 not (vertex(U1) and not exists U2 color(U1, U2))\n" "forall U1 (vertex(U1) -> exists U2 color(U1, U2))\n"
"forall U3, U4, U5 not (color(U3, U4) and color(U5, U4) and edge(U3, U5))\n"); "forall U3, U4, U5 (not color(U3, U4) or not color(U5, U4) or not edge(U3, U5))\n");
} }
} }