2 Commits

Author SHA1 Message Date
744496d1d9 Version bump for release 0.1.7 RC 1 2018-04-05 23:31:05 +02:00
5f771770b3 Support placeholders with #external declarations
This adds support for declaring predicates as placeholders through the
“#external” directive in the input language of clingo.

Placeholders are not subject to completion. This prevents predicates
that represent instance-specific facts from being assumed as universally
false by default negation when translating an encoding.

This stretches clingo’s usual syntax a bit in order to make the
implementation lightweight. In order to declare a predicate with a
specific arity as a placeholder, the following statement needs to be
added to the input program:
2018-04-05 23:28:22 +02:00
21 changed files with 185 additions and 1155 deletions

View File

@@ -1,24 +1,14 @@
# Change Log
## 0.1.8 RC 1 (2018-04-10)
## 0.1.7 (2018-04-05)
### Features
* more, advanced simplification rules
## 0.1.7 (2018-04-08)
### Features
Features:
* support for declaring placeholders with the `#external` directive
### Internal
* drops Boost dependency in favor of the header-only command-line option library [cxxopts](https://github.com/jarro2783/cxxopts)
## 0.1.6 (2017-06-12)
### Features
Features:
* unique IDs for all variables (user-defined variables are renamed)
* support for hiding predicates from completed output by using `#show` statements
@@ -26,7 +16,7 @@
* command-line option `--parentheses` to fully parenthesize the output
* adds multiple example instances for experimenting
### Bug Fixes
Bug Fixes:
* adds missing error message when attempting to read inaccessible file
* removes unnecessary parentheses after simplification
@@ -34,52 +24,52 @@
## 0.1.5 (2017-05-04)
### Bug Fixes
Bug Fixes:
* fixes lost signs with negated 0-ary predicates
## 0.1.4 (2017-04-12)
### Features
Features:
* completion of input programs (optional)
* command-line option `--complete` to turn on completion
## 0.1.3 (2017-03-30)
### Features
Features:
* support for anonymous variables
### Bug Fixes
Bug Fixes:
* fixes incorrectly simplified rules with comparisons
* fixes misleading error message concerning negated, unsupported body literals
## 0.1.2 (2017-03-23)
### Features
Features:
* simplification of output formulas (optional)
* command-line option `--simplify` to turn on simplification
### Bug Fixes
Bug Fixes:
* fixes incorrectly translated choice rules with multiple elements in the head aggregate
### Internal
Internal:
* explicit syntax tree representation for first-order formulas
## 0.1.1 (2017-03-06)
### Features
Features:
* support for choice rules (without guards)
## 0.1.0 (2016-11-24)
### Features
Features:
* initial support for translating rules in *Essential Gringo* (excluding aggregates) to first-order logic formulas
* command-line option `--color` to autodetect, enable, or disable color output

View File

@@ -1,6 +1,6 @@
# The MIT License (MIT)
Copyright © 20162018 Patrick Lühne
Copyright © 20162017 Patrick Lühne
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -70,7 +70,7 @@ int main(int argc, char **argv)
if (version)
{
std::cout << "anthem version 0.1.8-rc.1" << std::endl;
std::cout << "anthem version 0.1.7-rc.1" << std::endl;
return EXIT_SUCCESS;
}

View File

@@ -1,9 +1,12 @@
#external color(1).
#external edge(2).
#external vertex(1).
#show color/2.
colored(V, red) :- vertex(V), not colored(V, green), not colored(V, blue).
colored(V, green) :- vertex(V), not colored(V, red), not colored(V, blue).
colored(V, blue) :- vertex(V), not colored(V, red), not colored(V, green).
{color(V,C)} :- vertex(V), color(C).
covered(V) :- color(V, _).
:- vertex(V), not covered(V).
:- color(V1,C), color(V2,C), edge(V1,V2).
:- edge(V1, V2), colored(V1, C), colored(V2, C).
vertex(a).
vertex(b).
vertex(c).
edge(a, b).
edge(a, c).

View File

@@ -3,5 +3,3 @@ covered(I) :- in(I, S).
:- I = 1..n, not covered(I).
:- in(I, S), in(J, S), in(I + J, S).
#show in/2.

View File

@@ -5,7 +5,6 @@
#include <anthem/AST.h>
#include <anthem/ASTVisitors.h>
#include <anthem/Context.h>
namespace anthem
{
@@ -41,7 +40,7 @@ class VariableStack
bool matches(const Predicate &lhs, const Predicate &rhs);
bool matches(const Predicate &predicate, const PredicateSignature &signature);
bool matches(const PredicateSignature &lhs, const PredicateSignature &rhs);
void collectPredicateSignatures(const Formula &formula, std::vector<PredicateSignature> &predicateSignatures, Context &context);
void collectPredicateSignatures(const Formula &formula, std::vector<PredicateSignature> &predicateSignatures);
////////////////////////////////////////////////////////////////////////////////////////////////////
// Replacing Variables

View File

@@ -16,14 +16,6 @@ namespace anthem
//
////////////////////////////////////////////////////////////////////////////////////////////////////
struct PredicateSignatureMeta
{
ast::PredicateSignature predicateSignature;
bool used{false};
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Context
{
Context() = default;
@@ -38,8 +30,8 @@ struct Context
bool performSimplification = false;
bool performCompletion = false;
std::optional<std::vector<PredicateSignatureMeta>> visiblePredicateSignatures;
std::optional<std::vector<PredicateSignatureMeta>> externalPredicateSignatures;
std::optional<std::vector<ast::PredicateSignature>> visiblePredicateSignatures;
std::optional<std::vector<ast::PredicateSignature>> externalPredicateSignatures;
ast::ParenthesisStyle parenthesisStyle = ast::ParenthesisStyle::Normal;
};

View File

@@ -1,417 +0,0 @@
#ifndef __ANTHEM__EQUALITY_H
#define __ANTHEM__EQUALITY_H
#include <anthem/AST.h>
#include <anthem/ASTUtils.h>
namespace anthem
{
namespace ast
{
////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Equality
//
////////////////////////////////////////////////////////////////////////////////////////////////////
// TODO: move to separate class
enum class Tristate
{
True,
False,
Unknown,
};
////////////////////////////////////////////////////////////////////////////////////////////////////
Tristate equal(const Formula &lhs, const Formula &rhs);
Tristate equal(const Term &lhs, const Term &rhs);
////////////////////////////////////////////////////////////////////////////////////////////////////
struct FormulaEqualityVisitor
{
Tristate visit(const And &and_, const Formula &otherFormula)
{
if (!otherFormula.is<And>())
return Tristate::Unknown;
const auto &otherAnd = otherFormula.get<And>();
for (const auto &argument : and_.arguments)
{
const auto match = std::find_if(
otherAnd.arguments.cbegin(), otherAnd.arguments.cend(),
[&](const auto &otherArgument)
{
return equal(argument, otherArgument) == Tristate::True;
});
if (match == otherAnd.arguments.cend())
return Tristate::Unknown;
}
for (const auto &otherArgument : otherAnd.arguments)
{
const auto match = std::find_if(
and_.arguments.cbegin(), and_.arguments.cend(),
[&](const auto &argument)
{
return equal(otherArgument, argument) == Tristate::True;
});
if (match == and_.arguments.cend())
return Tristate::Unknown;
}
return Tristate::True;
}
Tristate visit(const Biconditional &biconditional, const Formula &otherFormula)
{
if (!otherFormula.is<Biconditional>())
return Tristate::Unknown;
const auto &otherBiconditional = otherFormula.get<Biconditional>();
if (equal(biconditional.left, otherBiconditional.left) == Tristate::True
&& equal(biconditional.right, otherBiconditional.right) == Tristate::True)
{
return Tristate::True;
}
if (equal(biconditional.left, otherBiconditional.right) == Tristate::True
&& equal(biconditional.right, otherBiconditional.left) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const Boolean &boolean, const Formula &otherFormula)
{
if (!otherFormula.is<Boolean>())
return Tristate::Unknown;
const auto &otherBoolean = otherFormula.get<Boolean>();
return (boolean.value == otherBoolean.value)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Comparison &comparison, const Formula &otherFormula)
{
if (!otherFormula.is<Comparison>())
return Tristate::Unknown;
const auto &otherComparison = otherFormula.get<Comparison>();
if (comparison.operator_ != otherComparison.operator_)
return Tristate::Unknown;
if (equal(comparison.left, otherComparison.left) == Tristate::True
&& equal(comparison.right, otherComparison.right) == Tristate::True)
{
return Tristate::True;
}
// Only = and != are commutative operators, all others dont need to be checked with exchanged arguments
if (comparison.operator_ != Comparison::Operator::Equal
&& comparison.operator_ != Comparison::Operator::NotEqual)
{
return Tristate::Unknown;
}
if (equal(comparison.left, otherComparison.right) == Tristate::True
&& equal(comparison.right, otherComparison.left) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const Exists &, const Formula &otherFormula)
{
if (!otherFormula.is<Exists>())
return Tristate::Unknown;
// TODO: implement stronger check
return Tristate::Unknown;
}
Tristate visit(const ForAll &, const Formula &otherFormula)
{
if (!otherFormula.is<ForAll>())
return Tristate::Unknown;
// TODO: implement stronger check
return Tristate::Unknown;
}
Tristate visit(const Implies &implies, const Formula &otherFormula)
{
if (!otherFormula.is<Implies>())
return Tristate::Unknown;
const auto &otherImplies = otherFormula.get<Implies>();
if (equal(implies.antecedent, otherImplies.antecedent) == Tristate::True
&& equal(implies.consequent, otherImplies.consequent) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const In &in, const Formula &otherFormula)
{
if (!otherFormula.is<In>())
return Tristate::Unknown;
const auto &otherIn = otherFormula.get<In>();
if (equal(in.element, otherIn.element) == Tristate::True
&& equal(in.set, otherIn.set) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const Not &not_, const Formula &otherFormula)
{
if (!otherFormula.is<Not>())
return Tristate::Unknown;
const auto &otherNot = otherFormula.get<Not>();
return equal(not_.argument, otherNot.argument);
}
Tristate visit(const Or &or_, const Formula &otherFormula)
{
if (!otherFormula.is<Or>())
return Tristate::Unknown;
const auto &otherOr = otherFormula.get<Or>();
for (const auto &argument : or_.arguments)
{
const auto match = std::find_if(
otherOr.arguments.cbegin(), otherOr.arguments.cend(),
[&](const auto &otherArgument)
{
return equal(argument, otherArgument) == Tristate::True;
});
if (match == otherOr.arguments.cend())
return Tristate::Unknown;
}
for (const auto &otherArgument : otherOr.arguments)
{
const auto match = std::find_if(
or_.arguments.cbegin(), or_.arguments.cend(),
[&](const auto &argument)
{
return equal(otherArgument, argument) == Tristate::True;
});
if (match == or_.arguments.cend())
return Tristate::Unknown;
}
return Tristate::True;
}
Tristate visit(const Predicate &predicate, const Formula &otherFormula)
{
if (!otherFormula.is<Predicate>())
return Tristate::Unknown;
const auto &otherPredicate = otherFormula.get<Predicate>();
if (!matches(predicate, otherPredicate))
return Tristate::False;
assert(predicate.arguments.size() == otherPredicate.arguments.size());
for (size_t i = 0; i < predicate.arguments.size(); i++)
if (equal(predicate.arguments[i], otherPredicate.arguments[i]) != Tristate::True)
return Tristate::Unknown;
return Tristate::True;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct TermEqualityVisitor
{
Tristate visit(const BinaryOperation &binaryOperation, const Term &otherTerm)
{
if (!otherTerm.is<BinaryOperation>())
return Tristate::Unknown;
const auto &otherBinaryOperation = otherTerm.get<BinaryOperation>();
if (binaryOperation.operator_ != otherBinaryOperation.operator_)
return Tristate::Unknown;
if (equal(binaryOperation.left, otherBinaryOperation.left) == Tristate::True
&& equal(binaryOperation.right, otherBinaryOperation.right) == Tristate::True)
{
return Tristate::True;
}
// Only + and * are commutative operators, all others dont need to be checked with exchanged arguments
if (binaryOperation.operator_ != BinaryOperation::Operator::Plus
&& binaryOperation.operator_ != BinaryOperation::Operator::Multiplication)
{
return Tristate::Unknown;
}
if (equal(binaryOperation.left, binaryOperation.right) == Tristate::True
&& equal(binaryOperation.right, binaryOperation.left) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const Boolean &boolean, const Term &otherTerm)
{
if (!otherTerm.is<Boolean>())
return Tristate::Unknown;
const auto &otherBoolean = otherTerm.get<Boolean>();
return (boolean.value == otherBoolean.value)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Constant &constant, const Term &otherTerm)
{
if (!otherTerm.is<Constant>())
return Tristate::Unknown;
const auto &otherConstant = otherTerm.get<Constant>();
return (constant.name == otherConstant.name)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Function &function, const Term &otherTerm)
{
if (!otherTerm.is<Function>())
return Tristate::Unknown;
const auto &otherFunction = otherTerm.get<Function>();
if (function.name != otherFunction.name)
return Tristate::False;
if (function.arguments.size() != otherFunction.arguments.size())
return Tristate::False;
for (size_t i = 0; i < function.arguments.size(); i++)
if (equal(function.arguments[i], otherFunction.arguments[i]) != Tristate::True)
return Tristate::Unknown;
return Tristate::True;
}
Tristate visit(const Integer &integer, const Term &otherTerm)
{
if (!otherTerm.is<Integer>())
return Tristate::Unknown;
const auto &otherInteger = otherTerm.get<Integer>();
return (integer.value == otherInteger.value)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Interval &interval, const Term &otherTerm)
{
if (!otherTerm.is<Interval>())
return Tristate::Unknown;
const auto &otherInterval = otherTerm.get<Interval>();
if (equal(interval.from, otherInterval.from) != Tristate::True)
return Tristate::Unknown;
if (equal(interval.to, otherInterval.to) != Tristate::True)
return Tristate::Unknown;
return Tristate::True;
}
Tristate visit(const SpecialInteger &specialInteger, const Term &otherTerm)
{
if (!otherTerm.is<SpecialInteger>())
return Tristate::Unknown;
const auto &otherSpecialInteger = otherTerm.get<SpecialInteger>();
return (specialInteger.type == otherSpecialInteger.type)
? Tristate::True
: Tristate::False;
}
Tristate visit(const String &string, const Term &otherTerm)
{
if (!otherTerm.is<String>())
return Tristate::Unknown;
const auto &otherString = otherTerm.get<String>();
return (string.text == otherString.text)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Variable &variable, const Term &otherTerm)
{
if (!otherTerm.is<Variable>())
return Tristate::Unknown;
const auto &otherVariable = otherTerm.get<Variable>();
return (variable.declaration == otherVariable.declaration)
? Tristate::True
: Tristate::False;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
Tristate equal(const Formula &lhs, const Formula &rhs)
{
return lhs.accept(FormulaEqualityVisitor(), rhs);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
Tristate equal(const Term &lhs, const Term &rhs)
{
return lhs.accept(TermEqualityVisitor(), rhs);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
}
}
#endif

View File

@@ -12,14 +12,6 @@ namespace anthem
//
////////////////////////////////////////////////////////////////////////////////////////////////////
enum class SimplificationResult
{
Simplified,
Unchanged,
};
////////////////////////////////////////////////////////////////////////////////////////////////////
void simplify(ast::Formula &formula);
////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@@ -1,198 +0,0 @@
#ifndef __ANTHEM__SIMPLIFICATION_VISITORS_H
#define __ANTHEM__SIMPLIFICATION_VISITORS_H
#include <anthem/AST.h>
#include <anthem/Simplification.h>
namespace anthem
{
namespace ast
{
////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Simplification Visitor
//
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class T>
struct FormulaSimplificationVisitor
{
template <class... Arguments>
SimplificationResult visit(And &and_, Formula &formula, Arguments &&... arguments)
{
for (auto &argument : and_.arguments)
if (argument.accept(*this, argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Biconditional &biconditional, Formula &formula, Arguments &&... arguments)
{
if (biconditional.left.accept(*this, biconditional.left, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
if (biconditional.right.accept(*this, biconditional.right, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Boolean &, Formula &formula, Arguments &&... arguments)
{
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Comparison &, Formula &formula, Arguments &&... arguments)
{
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Exists &exists, Formula &formula, Arguments &&... arguments)
{
if (exists.argument.accept(*this, exists.argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(ForAll &forAll, Formula &formula, Arguments &&... arguments)
{
if (forAll.argument.accept(*this, forAll.argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Implies &implies, Formula &formula, Arguments &&... arguments)
{
if (implies.antecedent.accept(*this, implies.antecedent, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
if (implies.consequent.accept(*this, implies.consequent, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(In &, Formula &formula, Arguments &&... arguments)
{
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Not &not_, Formula &formula, Arguments &&... arguments)
{
if (not_.argument.accept(*this, not_.argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Or &or_, Formula &formula, Arguments &&... arguments)
{
for (auto &argument : or_.arguments)
if (argument.accept(*this, argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Predicate &, Formula &formula, Arguments &&... arguments)
{
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class T, class SimplificationResult = void>
struct TermSimplificationVisitor
{
template <class... Arguments>
SimplificationResult visit(BinaryOperation &binaryOperation, Term &term, Arguments &&... arguments)
{
if (binaryOperation.left.accept(*this, binaryOperation.left, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
if (binaryOperation.right.accept(*this, binaryOperation.right, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Boolean &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Constant &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Function &function, Term &term, Arguments &&... arguments)
{
for (auto &argument : function.arguments)
if (argument.accept(*this, argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Integer &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Interval &interval, Term &term, Arguments &&... arguments)
{
if (interval.from.accept(*this, interval.from, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
if (interval.to.accept(*this, interval.to, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(SpecialInteger &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(String &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Variable &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
}
}
#endif

View File

@@ -176,8 +176,7 @@ struct StatementVisitor
context.logger.log(output::Priority::Debug, statement.location) << "showing “" << signature.name() << "/" << signature.arity() << "";
auto predicateSignature = ast::PredicateSignature{std::string(signature.name()), signature.arity()};
context.visiblePredicateSignatures.value().emplace_back(PredicateSignatureMeta{std::move(predicateSignature)});
context.visiblePredicateSignatures.value().emplace_back(std::string(signature.name()), signature.arity());
}
void visit(const Clingo::AST::ShowTerm &, const Clingo::AST::Statement &statement, std::vector<ast::ScopedFormula> &, Context &)
@@ -214,13 +213,12 @@ struct StatementVisitor
if (aritySymbol.type() != Clingo::SymbolType::Number)
fail();
const size_t arity = arityArgument.data.get<Clingo::Symbol>().number();
const auto &arity = arityArgument.data.get<Clingo::Symbol>().number();
if (!context.externalPredicateSignatures)
context.externalPredicateSignatures.emplace();
auto predicateSignature = ast::PredicateSignature{std::string(predicate.name), arity};
context.externalPredicateSignatures->emplace_back(PredicateSignatureMeta{std::move(predicateSignature)});
context.externalPredicateSignatures->emplace_back(std::string(predicate.name), arity);
}
template<class T>

View File

@@ -59,7 +59,7 @@ bool VariableStack::contains(const VariableDeclaration &variableDeclaration) con
};
const auto layerContainsVariableDeclaration =
[&variableDeclarationMatches](const auto &layer)
[&variableDeclaration, &variableDeclarationMatches](const auto &layer)
{
return (std::find_if(layer->cbegin(), layer->cend(), variableDeclarationMatches) != layer->cend());
};
@@ -194,7 +194,7 @@ struct CollectFreeVariablesVisitor
struct CollectPredicateSignaturesVisitor : public RecursiveFormulaVisitor<CollectPredicateSignaturesVisitor>
{
static void accept(const Predicate &predicate, const Formula &, std::vector<PredicateSignature> &predicateSignatures, Context &context)
static void accept(const Predicate &predicate, const Formula &, std::vector<PredicateSignature> &predicateSignatures)
{
const auto predicateSignatureMatches =
[&predicate](const auto &predicateSignature)
@@ -206,35 +206,12 @@ struct CollectPredicateSignaturesVisitor : public RecursiveFormulaVisitor<Collec
return;
// TODO: avoid copies
auto predicateSignature = PredicateSignature(std::string(predicate.name), predicate.arity());
// Ignore predicates that are declared #external
if (context.externalPredicateSignatures)
{
const auto matchesPredicateSignature =
[&](const auto &otherPredicateSignature)
{
return ast::matches(predicateSignature, otherPredicateSignature.predicateSignature);
};
auto &externalPredicateSignatures = context.externalPredicateSignatures.value();
const auto matchingExternalPredicateSignature =
std::find_if(externalPredicateSignatures.begin(), externalPredicateSignatures.end(), matchesPredicateSignature);
if (matchingExternalPredicateSignature != externalPredicateSignatures.end())
{
matchingExternalPredicateSignature->used = true;
return;
}
}
predicateSignatures.emplace_back(std::move(predicateSignature));
predicateSignatures.emplace_back(std::string(predicate.name), predicate.arity());
}
// Ignore all other types of expressions
template<class T>
static void accept(const T &, const Formula &, std::vector<PredicateSignature> &, const Context &)
static void accept(const T &, const Formula &, std::vector<PredicateSignature> &)
{
}
};
@@ -263,10 +240,10 @@ bool matches(const PredicateSignature &lhs, const PredicateSignature &rhs)
////////////////////////////////////////////////////////////////////////////////////////////////////
// TODO: remove const_cast
void collectPredicateSignatures(const Formula &formula, std::vector<PredicateSignature> &predicateSignatures, Context &context)
void collectPredicateSignatures(const Formula &formula, std::vector<PredicateSignature> &predicateSignatures)
{
auto &formulaMutable = const_cast<Formula &>(formula);
formulaMutable.accept(CollectPredicateSignaturesVisitor(), formulaMutable, predicateSignatures, context);
formulaMutable.accept(CollectPredicateSignaturesVisitor(), formulaMutable, predicateSignatures);
}
////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@@ -165,7 +165,7 @@ std::vector<ast::Formula> complete(std::vector<ast::ScopedFormula> &&scopedFormu
// Get a list of all predicates
for (const auto &scopedFormula : scopedFormulas)
ast::collectPredicateSignatures(scopedFormula.formula, predicateSignatures, context);
ast::collectPredicateSignatures(scopedFormula.formula, predicateSignatures);
std::sort(predicateSignatures.begin(), predicateSignatures.end(),
[](const auto &lhs, const auto &rhs)
@@ -180,9 +180,47 @@ std::vector<ast::Formula> complete(std::vector<ast::ScopedFormula> &&scopedFormu
std::vector<ast::Formula> completedFormulas;
// Warn about incorrect #external declarations
if (context.externalPredicateSignatures)
for (const auto &externalPredicateSignature : *context.externalPredicateSignatures)
{
// TODO: avoid code duplication
const auto matchesPredicateSignature =
[&](const auto &otherPredicateSignature)
{
return ast::matches(externalPredicateSignature, otherPredicateSignature);
};
const auto matchingPredicateSignature =
std::find_if(predicateSignatures.cbegin(), predicateSignatures.cend(), matchesPredicateSignature);
if (matchingPredicateSignature == predicateSignatures.cend())
context.logger.log(output::Priority::Warning) << "#external declaration of “" << externalPredicateSignature.name << "/" << externalPredicateSignature.arity <<"” does not match any known predicate";
}
// Complete predicates
for (const auto &predicateSignature : predicateSignatures)
{
// Dont complete predicates that are declared #external
if (context.externalPredicateSignatures)
{
const auto matchesPredicateSignature =
[&](const auto &otherPredicateSignature)
{
return ast::matches(predicateSignature, otherPredicateSignature);
};
const auto &externalPredicateSignatures = context.externalPredicateSignatures.value();
const auto matchingExternalPredicateSignature =
std::find_if(externalPredicateSignatures.cbegin(), externalPredicateSignatures.cend(), matchesPredicateSignature);
if (matchingExternalPredicateSignature != externalPredicateSignatures.cend())
continue;
}
completedFormulas.emplace_back(completePredicate(predicateSignature, scopedFormulas));
}
// Complete integrity constraints
for (auto &scopedFormula : scopedFormulas)

View File

@@ -194,7 +194,23 @@ void eliminateHiddenPredicates(const std::vector<ast::PredicateSignature> &predi
return;
}
auto &visiblePredicateSignatures = context.visiblePredicateSignatures.value();
const auto &visiblePredicateSignatures = context.visiblePredicateSignatures.value();
// Check for undeclared predicates that are requested to be shown
for (const auto &visiblePredicateSignature : visiblePredicateSignatures)
{
const auto matchesPredicateSignature =
[&](const auto &predicateSignature)
{
return ast::matches(predicateSignature, visiblePredicateSignature);
};
const auto matchingPredicateSignature =
std::find_if(predicateSignatures.cbegin(), predicateSignatures.cend(), matchesPredicateSignature);
if (matchingPredicateSignature == predicateSignatures.cend())
context.logger.log(output::Priority::Warning) << "cannot show undeclared predicate “" << visiblePredicateSignature.name << "/" << visiblePredicateSignature.arity <<"";
}
// Replace all occurrences of hidden predicates
for (size_t i = 0; i < predicateSignatures.size(); i++)
@@ -204,18 +220,15 @@ void eliminateHiddenPredicates(const std::vector<ast::PredicateSignature> &predi
const auto matchesPredicateSignature =
[&](const auto &otherPredicateSignature)
{
return ast::matches(predicateSignature, otherPredicateSignature.predicateSignature);
return ast::matches(predicateSignature, otherPredicateSignature);
};
const auto matchingVisiblePredicateSignature =
std::find_if(visiblePredicateSignatures.begin(), visiblePredicateSignatures.end(), matchesPredicateSignature);
std::find_if(visiblePredicateSignatures.cbegin(), visiblePredicateSignatures.cend(), matchesPredicateSignature);
// If the predicate ought to be visible, dont eliminate it
if (matchingVisiblePredicateSignature != visiblePredicateSignatures.end())
{
matchingVisiblePredicateSignature->used = true;
if (matchingVisiblePredicateSignature != visiblePredicateSignatures.cend())
continue;
}
// Check that the predicate is not declared #external
if (context.externalPredicateSignatures)

View File

@@ -3,9 +3,7 @@
#include <optional>
#include <anthem/ASTCopy.h>
#include <anthem/Equality.h>
#include <anthem/output/AST.h>
#include <anthem/SimplificationVisitors.h>
#include <anthem/ASTVisitors.h>
namespace anthem
{
@@ -99,65 +97,18 @@ struct ReplaceVariableInFormulaVisitor : public ast::RecursiveFormulaVisitor<Rep
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class SimplificationRule>
SimplificationResult simplify(ast::Formula &formula)
// Simplifies exists statements by using the equivalence “exists X (X = t and F(X))” == “F(t)”
// The exists statement has to be of the form “exists <variables> <conjunction>”
void simplify(ast::Exists &exists, ast::Formula &formula)
{
return SimplificationRule::apply(formula);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class FirstSimplificationRule, class SecondSimplificationRule, class... OtherSimplificationRules>
SimplificationResult simplify(ast::Formula &formula)
{
if (simplify<FirstSimplificationRule>(formula) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return simplify<SecondSimplificationRule, OtherSimplificationRules...>(formula);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleExistsWithoutQuantifiedVariables
{
static constexpr const auto Description = "exists () (F) === F";
static SimplificationResult apply(ast::Formula &formula)
// Simplify formulas like “exists X (X = Y)” to “#true”
// TODO: check that this covers all cases
if (exists.argument.is<ast::Comparison>())
{
if (!formula.is<ast::Exists>())
return SimplificationResult::Unchanged;
auto &exists = formula.get<ast::Exists>();
if (!exists.variables.empty())
return SimplificationResult::Unchanged;
formula = std::move(exists.argument);
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleTrivialAssignmentInExists
{
static constexpr const auto Description = "exists X (X = Y) === #true";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Exists>())
return SimplificationResult::Unchanged;
const auto &exists = formula.get<ast::Exists>();
if (!exists.argument.is<ast::Comparison>())
return SimplificationResult::Unchanged;
const auto &comparison = exists.argument.get<ast::Comparison>();
if (comparison.operator_ != ast::Comparison::Operator::Equal)
return SimplificationResult::Unchanged;
return;
const auto matchingAssignment = std::find_if(exists.variables.cbegin(), exists.variables.cend(),
[&](const auto &variableDeclaration)
@@ -166,331 +117,107 @@ struct SimplificationRuleTrivialAssignmentInExists
|| matchesVariableDeclaration(comparison.right, *variableDeclaration);
});
if (matchingAssignment == exists.variables.cend())
return SimplificationResult::Unchanged;
if (matchingAssignment != exists.variables.cend())
formula = ast::Formula::make<ast::Boolean>(true);
formula = ast::Formula::make<ast::Boolean>(true);
return SimplificationResult::Simplified;
return;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
if (!exists.argument.is<ast::And>())
return;
struct SimplificationRuleAssignmentInExists
{
static constexpr const auto Description = "exists X (X = t and F(X)) === exists () (F(t))";
auto &conjunction = exists.argument.get<ast::And>();
auto &arguments = conjunction.arguments;
static SimplificationResult apply(ast::Formula &formula)
// Simplify formulas of type “exists X (X = t and F(X))” to “F(t)”
for (auto i = exists.variables.begin(); i != exists.variables.end();)
{
if (!formula.is<ast::Exists>())
return SimplificationResult::Unchanged;
const auto &variableDeclaration = **i;
auto &exists = formula.get<ast::Exists>();
bool wasVariableReplaced = false;
if (!exists.argument.is<ast::And>())
return SimplificationResult::Unchanged;
auto &and_ = exists.argument.get<ast::And>();
auto &arguments = and_.arguments;
auto simplificationResult = SimplificationResult::Unchanged;
for (auto i = exists.variables.begin(); i != exists.variables.end();)
// TODO: refactor
for (auto j = arguments.begin(); j != arguments.end(); j++)
{
const auto &variableDeclaration = **i;
auto &argument = *j;
// Find term that is equivalent to the given variable
auto assignedTerm = extractAssignedTerm(argument, variableDeclaration);
bool wasVariableReplaced = false;
if (!assignedTerm)
continue;
// TODO: refactor
for (auto j = arguments.begin(); j != arguments.end(); j++)
// Replace all occurrences of the variable with the equivalent term
for (auto k = arguments.begin(); k != arguments.end(); k++)
{
auto &argument = *j;
// Find term that is equivalent to the given variable
auto assignedTerm = extractAssignedTerm(argument, variableDeclaration);
if (!assignedTerm)
if (k == j)
continue;
// Replace all occurrences of the variable with the equivalent term
for (auto k = arguments.begin(); k != arguments.end(); k++)
{
if (k == j)
continue;
auto &otherArgument = *k;
otherArgument.accept(ReplaceVariableInFormulaVisitor(), otherArgument, variableDeclaration, assignedTerm.value());
}
arguments.erase(j);
wasVariableReplaced = true;
simplificationResult = SimplificationResult::Simplified;
break;
auto &otherArgument = *k;
otherArgument.accept(ReplaceVariableInFormulaVisitor(), otherArgument, variableDeclaration, assignedTerm.value());
}
if (wasVariableReplaced)
{
i = exists.variables.erase(i);
continue;
}
i++;
arguments.erase(j);
wasVariableReplaced = true;
break;
}
return simplificationResult;
if (wasVariableReplaced)
{
i = exists.variables.erase(i);
continue;
}
i++;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleEmptyConjunction
{
static constexpr const auto Description = "[empty conjunction] === #true";
static SimplificationResult apply(ast::Formula &formula)
// If there are no arguments left, we had a formula of the form “exists X1, ..., Xn (X1 = Y1 and ... and Xn = Yn)”
// Such exists statements are useless and can be safely replaced with “#true”
if (arguments.empty())
{
if (!formula.is<ast::And>())
return SimplificationResult::Unchanged;
auto &and_ = formula.get<ast::And>();
if (!and_.arguments.empty())
return SimplificationResult::Unchanged;
formula = ast::Formula::make<ast::Boolean>(true);
return SimplificationResult::Simplified;
return;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// If the argument now is a conjunction with just one element, directly replace the input formula with the argument
if (arguments.size() == 1)
exists.argument = std::move(arguments.front());
struct SimplificationRuleOneElementConjunction
{
static constexpr const auto Description = "[conjunction of only F] === F";
// If there are still remaining variables, simplification is over
if (!exists.variables.empty())
return;
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::And>())
return SimplificationResult::Unchanged;
assert(!arguments.empty());
auto &and_ = formula.get<ast::And>();
if (and_.arguments.size() != 1)
return SimplificationResult::Unchanged;
formula = std::move(and_.arguments.front());
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleTrivialExists
{
static constexpr const auto Description = "exists ... ([#true/#false]) === [#true/#false]";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Exists>())
return SimplificationResult::Unchanged;
auto &exists = formula.get<ast::Exists>();
if (!exists.argument.is<ast::Boolean>())
return SimplificationResult::Unchanged;
formula = std::move(exists.argument);
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleInWithPrimitiveArguments
{
static constexpr const auto Description = "[primitive A] in [primitive B] === A = B";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::In>())
return SimplificationResult::Unchanged;
auto &in = formula.get<ast::In>();
assert(ast::isPrimitive(in.element));
if (!ast::isPrimitive(in.element) || !ast::isPrimitive(in.set))
return SimplificationResult::Unchanged;
formula = ast::Comparison(ast::Comparison::Operator::Equal, std::move(in.element), std::move(in.set));
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleSubsumptionInBiconditionals
{
static constexpr const auto Description = "(F <-> (F and G)) === (F -> G)";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Biconditional>())
return SimplificationResult::Unchanged;
auto &biconditional = formula.get<ast::Biconditional>();
const auto leftIsPredicate = biconditional.left.is<ast::Predicate>();
const auto rightIsPredicate = biconditional.right.is<ast::Predicate>();
const auto leftIsAnd = biconditional.left.is<ast::And>();
const auto rightIsAnd = biconditional.right.is<ast::And>();
if (!(leftIsPredicate && rightIsAnd) && !(rightIsPredicate && leftIsAnd))
return SimplificationResult::Unchanged;
auto &predicateSide = (leftIsPredicate ? biconditional.left : biconditional.right);
auto &andSide = (leftIsPredicate ? biconditional.right : biconditional.left);
auto &and_ = andSide.get<ast::And>();
const auto matchingPredicate =
std::find_if(and_.arguments.cbegin(), and_.arguments.cend(),
[&](const auto &argument)
{
return (ast::equal(predicateSide, argument) == ast::Tristate::True);
});
if (matchingPredicate == and_.arguments.cend())
return SimplificationResult::Unchanged;
and_.arguments.erase(matchingPredicate);
formula = ast::Formula::make<ast::Implies>(std::move(predicateSide), std::move(andSide));
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleDoubleNegation
{
static constexpr const auto Description = "not not F === F";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Not>())
return SimplificationResult::Unchanged;
auto &not_ = formula.get<ast::Not>();
if (!not_.argument.is<ast::Not>())
return SimplificationResult::Unchanged;
auto &notNot = not_.argument.get<ast::Not>();
formula = std::move(notNot.argument);
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleDeMorganForConjunctions
{
static constexpr const auto Description = "(not (F and G)) === (not F or not G)";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Not>())
return SimplificationResult::Unchanged;
auto &not_ = formula.get<ast::Not>();
if (!not_.argument.is<ast::And>())
return SimplificationResult::Unchanged;
auto &and_ = not_.argument.get<ast::And>();
for (auto &argument : and_.arguments)
argument = ast::Formula::make<ast::Not>(std::move(argument));
formula = ast::Formula::make<ast::Or>(std::move(and_.arguments));
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleImplicationFromDisjunction
{
static constexpr const auto Description = "(not F or G) === (F -> G)";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Or>())
return SimplificationResult::Unchanged;
auto &or_ = formula.get<ast::Or>();
if (or_.arguments.size() != 2)
return SimplificationResult::Unchanged;
const auto leftIsNot = or_.arguments[0].is<ast::Not>();
const auto rightIsNot = or_.arguments[1].is<ast::Not>();
if (leftIsNot == rightIsNot)
return SimplificationResult::Unchanged;
auto &negativeSide = leftIsNot ? or_.arguments[0] : or_.arguments[1];
auto &positiveSide = leftIsNot ? or_.arguments[1] : or_.arguments[0];
assert(negativeSide.is<ast::Not>());
assert(!positiveSide.is<ast::Not>());
auto &negativeSideArgument = negativeSide.get<ast::Not>().argument;
formula = ast::Formula::make<ast::Implies>(std::move(negativeSideArgument), std::move(positiveSide));
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
const auto simplifyWithDefaultRules =
simplify
<
SimplificationRuleDoubleNegation,
SimplificationRuleTrivialAssignmentInExists,
SimplificationRuleAssignmentInExists,
SimplificationRuleEmptyConjunction,
SimplificationRuleTrivialExists,
SimplificationRuleOneElementConjunction,
SimplificationRuleExistsWithoutQuantifiedVariables,
SimplificationRuleInWithPrimitiveArguments,
SimplificationRuleSubsumptionInBiconditionals,
SimplificationRuleDeMorganForConjunctions,
SimplificationRuleImplicationFromDisjunction
>;
// If there is more than one element in the conjunction, replace the input formula with the conjunction
formula = std::move(exists.argument);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Performs the different simplification techniques
struct SimplifyFormulaVisitor : public ast::FormulaSimplificationVisitor<SimplifyFormulaVisitor>
struct SimplifyFormulaVisitor : public ast::RecursiveFormulaVisitor<SimplifyFormulaVisitor>
{
// Do nothing for all other types of expressions
static SimplificationResult accept(ast::Formula &formula)
// Forward exists statements to the dedicated simplification function
static void accept(ast::Exists &exists, ast::Formula &formula)
{
simplify(exists, formula);
}
// Simplify formulas of type “A in B” to “A = B” if A and B are primitive
static void accept(ast::In &in, ast::Formula &formula)
{
assert(ast::isPrimitive(in.element));
if (!ast::isPrimitive(in.element) || !ast::isPrimitive(in.set))
return;
formula = ast::Comparison(ast::Comparison::Operator::Equal, std::move(in.element), std::move(in.set));
}
// Do nothing for all other types of expressions
template<class T>
static void accept(T &, ast::Formula &)
{
return simplifyWithDefaultRules(formula);
}
};
@@ -498,7 +225,7 @@ struct SimplifyFormulaVisitor : public ast::FormulaSimplificationVisitor<Simplif
void simplify(ast::Formula &formula)
{
while (formula.accept(SimplifyFormulaVisitor(), formula) == SimplificationResult::Simplified);
formula.accept(SimplifyFormulaVisitor(), formula);
}
////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@@ -85,26 +85,6 @@ void translate(const char *fileName, std::istream &stream, Context &context)
// Perform completion
auto completedFormulas = complete(std::move(scopedFormulas), context);
// Check for #show statements with undeclared predicates
if (context.visiblePredicateSignatures)
for (const auto &predicateSignature : context.visiblePredicateSignatures.value())
if (!predicateSignature.used)
context.logger.log(output::Priority::Warning)
<< "#show declaration of “"
<< predicateSignature.predicateSignature.name
<< "/" << predicateSignature.predicateSignature.arity
<< "” does not match any eligible predicate";
// Check for #external statements with undeclared predicates
if (context.externalPredicateSignatures)
for (const auto &predicateSignature : context.externalPredicateSignatures.value())
if (!predicateSignature.used)
context.logger.log(output::Priority::Warning)
<< "#external declaration of “"
<< predicateSignature.predicateSignature.name
<< "/" << predicateSignature.predicateSignature.arity
<< "” does not match any eligible predicate";
// Simplify output if specified
if (context.performSimplification)
for (auto &completedFormula : completedFormulas)

View File

@@ -152,9 +152,9 @@ TEST_CASE("[completion] Rules are completed", "[completion]")
CHECK(output.str() ==
"forall V1 (covered(V1) <-> exists U1 in(V1, U1))\n"
"forall V2, V3 (in(V2, V3) -> (V2 in 1..n and V3 in 1..r))\n"
"forall U2 (U2 in 1..n -> covered(U2))\n"
"forall U3, U4, U5 (not in(U3, U4) or not in(U5, U4) or not exists X1 (X1 in (U3 + U5) and in(X1, U4)))\n");
"forall V2, V3 (in(V2, V3) <-> (V2 in 1..n and V3 in 1..r and in(V2, V3)))\n"
"forall U2 not (U2 in 1..n and not covered(U2))\n"
"forall U3, U4, U5 not (in(U3, U4) and in(U5, U4) and exists X1 (X1 in (U3 + U5) and in(X1, U4)))\n");
}
SECTION("binary operations with multiple variables")

View File

@@ -103,10 +103,9 @@ TEST_CASE("[hidden predicate elimination] Hidden predicates are correctly elimin
"#show a/1.";
anthem::translate("input", input, context);
// TODO: simplify further
CHECK(output.str() ==
"forall V1 (a(V1) <-> not d(V1))\n"
"forall V2 (d(V2) <-> d(V2))\n"
"forall V2 (d(V2) <-> not not d(V2))\n"
"forall V3 (e(V3) <-> e(V3))\n");
}
@@ -165,11 +164,12 @@ TEST_CASE("[hidden predicate elimination] Hidden predicates are correctly elimin
"#show t/0.";
anthem::translate("input", input, context);
// TODO: simplify further
CHECK(output.str() ==
"(s -> not #false)\n"
"(t -> not #false)\n"
"(s -> t)\n"
"(#false or #false or not #false)\n");
"(s <-> (not #false and s))\n"
"(t <-> (not #false and t))\n"
"not (s and not t)\n"
"not (not #false and not #false and #false)\n");
}
SECTION("predicate with more than one argument is hidden correctly")

View File

@@ -1,62 +0,0 @@
#include <catch.hpp>
#include <sstream>
#include <anthem/AST.h>
#include <anthem/Context.h>
#include <anthem/Translation.h>
////////////////////////////////////////////////////////////////////////////////////////////////////
TEST_CASE("[placeholders] Programs with placeholders are correctly completed", "[placeholders]")
{
std::stringstream input;
std::stringstream output;
std::stringstream errors;
anthem::output::Logger logger(output, errors);
anthem::Context context(std::move(logger));
context.performSimplification = true;
context.performCompletion = true;
SECTION("no placeholders")
{
input <<
"colored(V, red) :- vertex(V), not colored(V, green), not colored(V, blue).";
anthem::translate("input", input, context);
CHECK(output.str() ==
"forall V1, V2 (colored(V1, V2) <-> (V2 = red and vertex(V1) and not colored(V1, green) and not colored(V1, blue)))\n"
"forall V3 not vertex(V3)\n");
}
SECTION("single placeholder")
{
input <<
"#external vertex(1).\n"
"colored(V, red) :- vertex(V), not colored(V, green), not colored(V, blue).";
anthem::translate("input", input, context);
CHECK(output.str() ==
"forall V1, V2 (colored(V1, V2) <-> (V2 = red and vertex(V1) and not colored(V1, green) and not colored(V1, blue)))\n");
}
SECTION("complex example: graph coloring")
{
input <<
"#external color(1).\n"
"#external edge(2).\n"
"#external vertex(1).\n"
"#show color/2.\n"
"{color(V, C)} :- vertex(V), color(C).\n"
"covered(V) :- color(V, _).\n"
":- vertex(V), not covered(V).\n"
":- color(V1, C), color(V2, C), edge(V1, V2).";
anthem::translate("input", input, context);
CHECK(output.str() ==
"forall V1, V2 (color(V1, V2) -> (vertex(V1) and color(V2)))\n"
"forall U1 (vertex(U1) -> exists U2 color(U1, U2))\n"
"forall U3, U4, U5 (not color(U3, U4) or not color(U5, U4) or not edge(U3, U5))\n");
}
}