add pauls config test (TMP)
This commit is contained in:
parent
be56112b33
commit
36cdba3fdf
50
main.py
50
main.py
@ -19,8 +19,8 @@ parser.add_argument("--test", action="store", dest="test_data",
|
||||
# parser.add_argument("--h5data", action="store", dest="h5data",
|
||||
# default="")
|
||||
#
|
||||
parser.add_argument("--model", action="store", dest="model",
|
||||
default="model_x")
|
||||
parser.add_argument("--models", action="store", dest="models",
|
||||
default="models/model_x")
|
||||
|
||||
# parser.add_argument("--pred", action="store", dest="pred",
|
||||
# default="")
|
||||
@ -80,6 +80,39 @@ args = parser.parse_args()
|
||||
# session = tf.Session(config=config)
|
||||
|
||||
|
||||
def main_paul_best():
|
||||
char_dict = dataset.get_character_dict()
|
||||
user_flow_df = dataset.get_user_flow_data(args.train_data)
|
||||
|
||||
param = models.pauls_networks.best_config
|
||||
param["vocab_size"] = len(char_dict) + 1
|
||||
print(param)
|
||||
|
||||
print("create training dataset")
|
||||
domain_tr, flow_tr, client_tr, server_tr = dataset.create_dataset_from_flows(
|
||||
user_flow_df, char_dict,
|
||||
max_len=args.domain_length,
|
||||
window_size=args.window)
|
||||
client_tr = np_utils.to_categorical(client_tr, 2)
|
||||
server_tr = np_utils.to_categorical(server_tr, 2)
|
||||
|
||||
embedding, model = models.get_models_by_params(param)
|
||||
|
||||
model.compile(optimizer='adam',
|
||||
loss='categorical_crossentropy',
|
||||
metrics=['accuracy'])
|
||||
|
||||
model.fit([domain_tr, flow_tr],
|
||||
[client_tr, server_tr],
|
||||
batch_size=args.batch_size,
|
||||
epochs=args.epochs,
|
||||
shuffle=True,
|
||||
validation_split=0.2)
|
||||
|
||||
embedding.save(args.models + "_embd.h5")
|
||||
model.save(args.models + "_clf.h5")
|
||||
|
||||
|
||||
def main_hyperband():
|
||||
char_dict = dataset.get_character_dict()
|
||||
user_flow_df = dataset.get_user_flow_data(args.train_data)
|
||||
@ -137,13 +170,13 @@ def main_train():
|
||||
client_tr = np_utils.to_categorical(client_tr, 2)
|
||||
server_tr = np_utils.to_categorical(server_tr, 2)
|
||||
|
||||
shared_cnn = network.get_embedding(len(char_dict) + 1, args.embedding, args.domain_length,
|
||||
args.hidden_char_dims, kernel_size, args.domain_embedding, 0.5)
|
||||
shared_cnn.summary()
|
||||
embedding = network.get_embedding(len(char_dict) + 1, args.embedding, args.domain_length,
|
||||
args.hidden_char_dims, kernel_size, args.domain_embedding, 0.5)
|
||||
embedding.summary()
|
||||
|
||||
model = network.get_model(cnnDropout, flow_tr.shape[-1], args.domain_embedding,
|
||||
args.window, args.domain_length, filters, kernel_size,
|
||||
cnnHiddenDims, shared_cnn)
|
||||
cnnHiddenDims, embedding)
|
||||
model.summary()
|
||||
|
||||
model.compile(optimizer='adam',
|
||||
@ -157,7 +190,8 @@ def main_train():
|
||||
shuffle=True,
|
||||
validation_split=0.2)
|
||||
|
||||
model.save(args.model)
|
||||
embedding.save(args.models + "_embd.h5")
|
||||
model.save(args.models + "_clf.h5")
|
||||
|
||||
|
||||
def main_test():
|
||||
@ -206,6 +240,8 @@ def main():
|
||||
main_visualization()
|
||||
if "score" in args.modes:
|
||||
main_score()
|
||||
if "paul" in args.modes:
|
||||
main_paul_best()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -3,12 +3,19 @@ from keras.engine import Input, Model
|
||||
from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout, Activation, TimeDistributed
|
||||
|
||||
best_config = {
|
||||
"type": "paul",
|
||||
"batch_size": 64,
|
||||
"window_size": 10,
|
||||
"domain_length": 40,
|
||||
"flow_features": 3,
|
||||
#
|
||||
'dropout': 0.5,
|
||||
'domain_features': 32,
|
||||
'drop_out': 0.5,
|
||||
'embedding_size': 64,
|
||||
'filter_main': 512,
|
||||
'flow_features': 3,
|
||||
'hidden_dims': 32,
|
||||
'dense_main': 32,
|
||||
'filter_embedding': 32,
|
||||
'hidden_embedding': 32,
|
||||
'kernel_embedding': 8,
|
||||
|
Loading…
x
Reference in New Issue
Block a user