refactor main functions - separate things into different functions
This commit is contained in:
parent
933f6bf1d7
commit
3c4be52bb6
76
hyperband.py
Normal file
76
hyperband.py
Normal file
@ -0,0 +1,76 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# implementation of hyperband:
|
||||
# https://arxiv.org/pdf/1603.06560.pdf
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_hyperparameter_configuration(configGenerator, n):
|
||||
configurations = []
|
||||
for i in np.arange(0, n, 1):
|
||||
configurations.append(configGenerator())
|
||||
return configurations
|
||||
|
||||
|
||||
def run_then_return_val_loss(config, r_i, modelGenerator, trainData, trainLabel,
|
||||
testData, testLabel):
|
||||
# parameter
|
||||
batch_size = 128
|
||||
model = modelGenerator(config)
|
||||
if model != None:
|
||||
model.fit(x=trainData, y=trainLabel,
|
||||
epochs=int(r_i), shuffle=True, initial_epoch=0,
|
||||
batch_size=batch_size)
|
||||
score = model.evaluate(testData, testLabel,
|
||||
batch_size=batch_size)
|
||||
score = score[0]
|
||||
else:
|
||||
score = np.infty
|
||||
return score
|
||||
|
||||
|
||||
def top_k(configurations, L, k):
|
||||
outConfigs = []
|
||||
sortIDs = np.argsort(np.array(L))
|
||||
for i in np.arange(0, k, 1):
|
||||
outConfigs.append(configurations[sortIDs[i]])
|
||||
return outConfigs
|
||||
|
||||
|
||||
def hyperband(R, nu, modelGenerator,
|
||||
configGenerator,
|
||||
trainData, trainLabel,
|
||||
testData, testLabel,
|
||||
outputFile=''):
|
||||
allLosses = []
|
||||
allConfigs = []
|
||||
# input
|
||||
|
||||
# initialization
|
||||
s_max = np.floor(np.log(R) / np.log(nu))
|
||||
B = (s_max + 1) * R
|
||||
|
||||
for s in np.arange(s_max, -1, -1):
|
||||
n = np.ceil(np.float(B) / np.float(R) * (np.float(np.power(nu, s)) / np.float(s + 1)))
|
||||
r = np.float(R) * np.power(nu, -s)
|
||||
configurations = get_hyperparameter_configuration(configGenerator, n)
|
||||
for i in np.arange(0, s + 1, 1):
|
||||
n_i = np.floor(np.float(n) * np.power(nu, -i))
|
||||
r_i = np.float(r) * np.power(nu, i)
|
||||
L = []
|
||||
for config in configurations:
|
||||
curLoss = run_then_return_val_loss(config, r_i, modelGenerator,
|
||||
trainData, trainLabel,
|
||||
testData, testLabel)
|
||||
L.append(curLoss)
|
||||
allLosses.append(curLoss)
|
||||
allConfigs.append(config)
|
||||
if outputFile != '':
|
||||
with open(outputFile, 'a') as myfile:
|
||||
myfile.write(str(config) + '\t' + str(curLoss) + \
|
||||
'\t' + str(r_i) + '\n')
|
||||
configurations = top_k(configurations, L, np.floor(np.float(n_i) / nu))
|
||||
|
||||
# print('n_i: ' + str(n_i))
|
||||
# print('r_i: ' + str(r_i))
|
||||
bestConfig = top_k(allConfigs, allLosses, 1)
|
||||
return (bestConfig[0], allConfigs, allLosses)
|
40
main.py
40
main.py
@ -79,13 +79,11 @@ args = parser.parse_args()
|
||||
# session = tf.Session(config=config)
|
||||
|
||||
|
||||
def main():
|
||||
def main_train():
|
||||
# parameter
|
||||
cnnDropout = 0.5
|
||||
cnnHiddenDims = 1024
|
||||
numCiscoFeatures = 30
|
||||
cnnHiddenDims = 512
|
||||
kernel_size = 3
|
||||
drop_out = 0.5
|
||||
filters = 128
|
||||
network = models.pauls_networks
|
||||
|
||||
@ -120,10 +118,6 @@ def main():
|
||||
validation_split=0.2)
|
||||
|
||||
|
||||
def main_train():
|
||||
pass
|
||||
|
||||
|
||||
def main_test():
|
||||
char_dict = dataset.get_character_dict()
|
||||
user_flow_df = dataset.get_user_flow_data(args.test_data)
|
||||
@ -133,5 +127,35 @@ def main_test():
|
||||
# TODO: get model and exec model.evaluate(...)
|
||||
|
||||
|
||||
def main_visualization():
|
||||
mask = dataset.load_mask_eval(args.data, args.test_image)
|
||||
y_pred_path = args.model_path + "pred.npy"
|
||||
print("plot model")
|
||||
model = load_model(args.model_path + "model.h5",
|
||||
custom_objects=evaluation.get_metrics())
|
||||
visualize.plot_model(model, args.model_path + "model.png")
|
||||
print("plot training curve")
|
||||
logs = pd.read_csv(args.model_path + "train.log")
|
||||
visualize.plot_training_curve(logs, "{}/train.png".format(args.model_path))
|
||||
pred = np.load(y_pred_path)
|
||||
print("plot pr curve")
|
||||
visualize.plot_precision_recall(mask, pred, "{}/prc.png".format(args.model_path))
|
||||
visualize.plot_precision_recall_curves(mask, pred, "{}/prc2.png".format(args.model_path))
|
||||
print("plot roc curve")
|
||||
visualize.plot_roc_curve(mask, pred, "{}/roc.png".format(args.model_path))
|
||||
print("store prediction image")
|
||||
visualize.save_image_as(pred, "{}/pred.png".format(args.model_path))
|
||||
|
||||
|
||||
def main_score():
|
||||
mask = dataset.load_mask_eval(args.data, args.test_image)
|
||||
pred = np.load(args.pred)
|
||||
visualize.score_model(mask, pred)
|
||||
|
||||
|
||||
def main():
|
||||
main_train()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -1,2 +1,32 @@
|
||||
from . import pauls_networks
|
||||
from . import renes_networks
|
||||
|
||||
|
||||
def get_models_by_params(params: dict):
|
||||
# decomposing param section
|
||||
# mainly embedding model
|
||||
network_type = params.get("type")
|
||||
vocab_size = params.get("vocab_size")
|
||||
embedding_size = params.get("embedding_size")
|
||||
input_length = params.get("input_length")
|
||||
filter_embedding = params.get("filter_embedding")
|
||||
kernel_embedding = params.get("kernel_embedding")
|
||||
hidden_embedding = params.get("hidden_embedding")
|
||||
dropout = params.get("dropout")
|
||||
# mainly prediction model
|
||||
flow_features = params.get("flow_features")
|
||||
domain_features = params.get("domain_features")
|
||||
window_size = params.get("window_size")
|
||||
domain_length = params.get("domain_length")
|
||||
filter_main = params.get("filter_main")
|
||||
kernel_main = params.get("kernels_main")
|
||||
dense_dim = params.get("dense_main")
|
||||
# create models
|
||||
networks = renes_networks if network_type == "rene" else pauls_networks
|
||||
embedding_model = networks.get_embedding(vocab_size, embedding_size, input_length,
|
||||
filter_embedding, kernel_embedding, hidden_embedding, drop_out=dropout)
|
||||
|
||||
predict_model = networks.get_model(dropout, flow_features, domain_features, window_size, domain_length,
|
||||
filter_main, kernel_main, dense_dim, embedding_model)
|
||||
|
||||
return embedding_model, predict_model
|
||||
|
@ -4,14 +4,14 @@ from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout,
|
||||
|
||||
|
||||
def get_embedding(vocab_size, embedding_size, input_length,
|
||||
hidden_char_dims, kernel_size, hidden_dims, drop_out=0.5):
|
||||
filter_size, kernel_size, hidden_dims, drop_out=0.5):
|
||||
x = y = Input(shape=(input_length,))
|
||||
y = Embedding(input_dim=vocab_size, output_dim=embedding_size)(y)
|
||||
y = Conv1D(hidden_char_dims, kernel_size=5, activation='relu')(y)
|
||||
y = Conv1D(filter_size, kernel_size=5, activation='relu')(y)
|
||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||
y = Conv1D(hidden_char_dims, kernel_size=3, activation='relu')(y)
|
||||
y = Conv1D(filter_size, kernel_size=3, activation='relu')(y)
|
||||
y = MaxPool1D(pool_size=3, strides=1)(y)
|
||||
y = Conv1D(hidden_char_dims, kernel_size=3, activation='relu')(y)
|
||||
y = Conv1D(filter_size, kernel_size=3, activation='relu')(y)
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(drop_out)(y)
|
||||
y = Dense(hidden_dims, activation="relu")(y)
|
||||
@ -35,6 +35,7 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
||||
y = GlobalMaxPooling1D()(y)
|
||||
y = Dropout(cnnDropout)(y)
|
||||
y = Dense(dense_dim, activation='relu')(y)
|
||||
y = Dense(dense_dim // 2, activation='relu')(y)
|
||||
y1 = Dense(2, activation='softmax', name="client")(y)
|
||||
y2 = Dense(2, activation='softmax', name="server")(y)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user