add server classification model
This commit is contained in:
parent
345afbaef5
commit
508667d1d0
55
main.py
55
main.py
@ -594,7 +594,60 @@ def plot_overall_result():
|
||||
visualize.plot_error_bars(models)
|
||||
visualize.plot_legend()
|
||||
visualize.plot_save(f"{path}/error_bars_{cat}.png")
|
||||
|
||||
|
||||
def train_server_only():
|
||||
logger.info(f"Create model path {args.model_path}")
|
||||
exists_or_make_path(args.model_path)
|
||||
logger.info(f"Use command line arguments: {args}")
|
||||
|
||||
domain_tr, flow_tr, name_tr, client_tr, server_windows_tr = dataset.load_or_generate_h5data(args.data,
|
||||
args.data,
|
||||
args.domain_length,
|
||||
args.window)
|
||||
domain_tr = domain_tr.value.reshape(-1, 40)
|
||||
flow_tr = flow_tr.value.reshape(-1, 3)
|
||||
server_tr = server_windows_tr.value.reshape(-1)
|
||||
|
||||
logger.info("define callbacks")
|
||||
callbacks = []
|
||||
callbacks.append(ModelCheckpoint(filepath=args.clf_model,
|
||||
monitor='loss',
|
||||
verbose=False,
|
||||
save_best_only=True))
|
||||
callbacks.append(CSVLogger(args.train_log))
|
||||
logger.info(f"Use early stopping: {args.stop_early}")
|
||||
if args.stop_early:
|
||||
callbacks.append(EarlyStopping(monitor='val_loss',
|
||||
patience=5,
|
||||
verbose=False))
|
||||
custom_metrics = models.get_metric_functions()
|
||||
|
||||
model = models.get_server_model_by_params(params=PARAMS)
|
||||
|
||||
features = {"ipt_domains": domain_tr, "ipt_flows": flow_tr}
|
||||
if args.model_output == "both":
|
||||
labels = {"client": client_tr, "server": server_tr}
|
||||
elif args.model_output == "client":
|
||||
labels = {"client": client_tr}
|
||||
elif args.model_output == "server":
|
||||
labels = {"server": server_tr}
|
||||
else:
|
||||
raise ValueError("unknown model output")
|
||||
|
||||
logger.info("compile and train model")
|
||||
logger.info(model.get_config())
|
||||
model.compile(optimizer='adam',
|
||||
loss='binary_crossentropy',
|
||||
metrics=['accuracy'] + custom_metrics)
|
||||
|
||||
model.summary()
|
||||
model.fit(features, labels,
|
||||
batch_size=args.batch_size,
|
||||
epochs=args.epochs,
|
||||
validation_split=0.2,
|
||||
callbacks=callbacks)
|
||||
|
||||
|
||||
def main():
|
||||
if "train" == args.mode:
|
||||
@ -613,6 +666,8 @@ def main():
|
||||
main_beta()
|
||||
if "all_beta" == args.mode:
|
||||
plot_overall_result()
|
||||
if "server" == args.mode:
|
||||
train_server_only()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -7,14 +7,14 @@ from . import flat_2, pauls_networks, renes_networks
|
||||
def get_models_by_params(params: dict):
|
||||
# decomposing param section
|
||||
# mainly embedding model
|
||||
network_type = params.get("type")
|
||||
# network_type = params.get("type")
|
||||
network_depth = params.get("depth")
|
||||
embedding_size = params.get("embedding")
|
||||
input_length = params.get("input_length")
|
||||
filter_embedding = params.get("filter_embedding")
|
||||
kernel_embedding = params.get("kernel_embedding")
|
||||
hidden_embedding = params.get("dense_embedding")
|
||||
dropout = params.get("dropout")
|
||||
# dropout = params.get("dropout")
|
||||
# mainly prediction model
|
||||
flow_features = params.get("flow_features")
|
||||
window_size = params.get("window_size")
|
||||
@ -44,7 +44,36 @@ def get_models_by_params(params: dict):
|
||||
return embedding_model, old_model, new_model
|
||||
|
||||
|
||||
def get_metrics():
|
||||
def get_server_model_by_params(params: dict):
|
||||
# decomposing param section
|
||||
# mainly embedding model
|
||||
network_depth = params.get("depth")
|
||||
embedding_size = params.get("embedding")
|
||||
input_length = params.get("input_length")
|
||||
filter_embedding = params.get("filter_embedding")
|
||||
kernel_embedding = params.get("kernel_embedding")
|
||||
hidden_embedding = params.get("dense_embedding")
|
||||
# mainly prediction model
|
||||
flow_features = params.get("flow_features")
|
||||
domain_length = params.get("domain_length")
|
||||
dense_dim = params.get("dense_main")
|
||||
# create models
|
||||
if network_depth == "flat1":
|
||||
networks = pauls_networks
|
||||
elif network_depth == "flat2":
|
||||
networks = flat_2
|
||||
elif network_depth == "deep1":
|
||||
networks = renes_networks
|
||||
else:
|
||||
raise Exception("network not found")
|
||||
|
||||
embedding_model = networks.get_embedding(embedding_size, input_length, filter_embedding, kernel_embedding,
|
||||
hidden_embedding, 0.5)
|
||||
|
||||
return networks.get_server_model(flow_features, domain_length, dense_dim, embedding_model)
|
||||
|
||||
|
||||
def get_custom_objects():
|
||||
return dict([
|
||||
("precision", precision),
|
||||
("recall", recall),
|
||||
|
@ -3,7 +3,8 @@ from collections import namedtuple
|
||||
import keras
|
||||
from keras.activations import elu
|
||||
from keras.engine import Input, Model as KerasModel
|
||||
from keras.layers import Conv1D, Dense, Dropout, Embedding, GlobalAveragePooling1D, GlobalMaxPooling1D, TimeDistributed
|
||||
from keras.layers import BatchNormalization, Conv1D, Dense, Dropout, Embedding, GlobalAveragePooling1D, \
|
||||
GlobalMaxPooling1D, TimeDistributed
|
||||
|
||||
import dataset
|
||||
|
||||
@ -40,6 +41,8 @@ def get_model(cnnDropout, flow_features, domain_features, window_size, domain_le
|
||||
ipt_domains = Input(shape=(window_size, domain_length), name="ipt_domains")
|
||||
encoded = TimeDistributed(cnn, name="domain_cnn")(ipt_domains)
|
||||
ipt_flows = Input(shape=(window_size, flow_features), name="ipt_flows")
|
||||
ipt_flows = BatchNormalization()(ipt_flows)
|
||||
ipt_flows = Dense(dense_dim, activation=selu)(ipt_flows)
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||
# CNN processing a small slides of flow windows
|
||||
y = Conv1D(cnn_dims,
|
||||
|
@ -89,3 +89,16 @@ def get_new_model(dropout, flow_features, domain_features, window_size, domain_l
|
||||
out_client = Dense(1, activation='sigmoid', name="client")(y)
|
||||
|
||||
return Model(ipt_domains, ipt_flows, out_client, out_server)
|
||||
|
||||
|
||||
def get_server_model(flow_features, domain_length, dense_dim, cnn):
|
||||
ipt_domains = Input(shape=(domain_length,), name="ipt_domains")
|
||||
ipt_flows = Input(shape=(flow_features,), name="ipt_flows")
|
||||
encoded = cnn(ipt_domains)
|
||||
merged = keras.layers.concatenate([encoded, ipt_flows], -1)
|
||||
y = Dense(dense_dim,
|
||||
activation="relu",
|
||||
name="dense_server")(merged)
|
||||
out_server = Dense(1, activation="sigmoid", name="server")(y)
|
||||
|
||||
return KerasModel(inputs=[ipt_domains, ipt_flows], outputs=out_server)
|
||||
|
Loading…
x
Reference in New Issue
Block a user