368 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			368 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import json
 | 
						|
import logging
 | 
						|
import os
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import pandas as pd
 | 
						|
import tensorflow as tf
 | 
						|
from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping
 | 
						|
from keras.models import load_model
 | 
						|
from sklearn.utils import class_weight
 | 
						|
 | 
						|
import arguments
 | 
						|
import dataset
 | 
						|
import hyperband
 | 
						|
import models
 | 
						|
# create logger
 | 
						|
import visualize
 | 
						|
from dataset import load_or_generate_h5data
 | 
						|
from utils import exists_or_make_path
 | 
						|
 | 
						|
logger = logging.getLogger('logger')
 | 
						|
logger.setLevel(logging.DEBUG)
 | 
						|
 | 
						|
# create console handler and set level to debug
 | 
						|
ch = logging.StreamHandler()
 | 
						|
ch.setLevel(logging.DEBUG)
 | 
						|
 | 
						|
# create formatter
 | 
						|
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
 | 
						|
 | 
						|
# add formatter to ch
 | 
						|
ch.setFormatter(formatter)
 | 
						|
 | 
						|
# add ch to logger
 | 
						|
logger.addHandler(ch)
 | 
						|
 | 
						|
ch = logging.FileHandler("info.log")
 | 
						|
ch.setLevel(logging.DEBUG)
 | 
						|
 | 
						|
# create formatter
 | 
						|
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
 | 
						|
 | 
						|
# add formatter to ch
 | 
						|
ch.setFormatter(formatter)
 | 
						|
 | 
						|
# add ch to logger
 | 
						|
logger.addHandler(ch)
 | 
						|
 | 
						|
args = arguments.parse()
 | 
						|
 | 
						|
if args.gpu:
 | 
						|
    config = tf.ConfigProto(log_device_placement=True)
 | 
						|
    config.gpu_options.per_process_gpu_memory_fraction = 0.5
 | 
						|
    config.gpu_options.allow_growth = True
 | 
						|
    session = tf.Session(config=config)
 | 
						|
 | 
						|
 | 
						|
def main_paul_best():
 | 
						|
    char_dict = dataset.get_character_dict()
 | 
						|
    pauls_best_params = models.pauls_networks.best_config
 | 
						|
    pauls_best_params["vocab_size"] = len(char_dict) + 1
 | 
						|
    main_train(pauls_best_params)
 | 
						|
 | 
						|
 | 
						|
def main_hyperband():
 | 
						|
    char_dict = dataset.get_character_dict()
 | 
						|
 | 
						|
    params = {
 | 
						|
        # static params
 | 
						|
        "type": ["paul"],
 | 
						|
        "batch_size": [args.batch_size],
 | 
						|
        "vocab_size": [len(char_dict) + 1],
 | 
						|
        "window_size": [10],
 | 
						|
        "domain_length": [40],
 | 
						|
        "flow_features": [3],
 | 
						|
        "input_length": [40],
 | 
						|
        # model params
 | 
						|
        "embedding_size": [8, 16, 32, 64, 128, 256],
 | 
						|
        "filter_embedding": [8, 16, 32, 64, 128, 256],
 | 
						|
        "kernel_embedding": [1, 3, 5, 7, 9],
 | 
						|
        "hidden_embedding": [8, 16, 32, 64, 128, 256],
 | 
						|
        "dropout": [0.5],
 | 
						|
        "domain_features": [8, 16, 32, 64, 128, 256],
 | 
						|
        "filter_main": [8, 16, 32, 64, 128, 256],
 | 
						|
        "kernels_main": [1, 3, 5, 7, 9],
 | 
						|
        "dense_main": [8, 16, 32, 64, 128, 256],
 | 
						|
    }
 | 
						|
 | 
						|
    logger.info("create training dataset")
 | 
						|
    domain_tr, flow_tr, client_tr, server_tr = load_or_generate_h5data(args.train_h5data, args.train_data,
 | 
						|
                                                                       args.domain_length, args.window)
 | 
						|
    hp = hyperband.Hyperband(params,
 | 
						|
                             [domain_tr, flow_tr],
 | 
						|
                             [client_tr, server_tr])
 | 
						|
    results = hp.run()
 | 
						|
    json.dump(results, open("hyperband.json"))
 | 
						|
 | 
						|
 | 
						|
def get_custom_class_weights(client_tr, server_tr):
 | 
						|
    client = client_tr.value if type(client_tr) != np.ndarray else client_tr
 | 
						|
    server = server_tr.value if type(server_tr) != np.ndarray else server_tr
 | 
						|
    client_class_weight = class_weight.compute_class_weight('balanced', np.unique(client), client)
 | 
						|
    server_class_weight = class_weight.compute_class_weight('balanced', np.unique(server), server)
 | 
						|
    return {
 | 
						|
        "client": client_class_weight,
 | 
						|
        "server": server_class_weight
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
def main_train(param=None):
 | 
						|
    exists_or_make_path(args.model_path)
 | 
						|
 | 
						|
    char_dict = dataset.get_character_dict()
 | 
						|
    domain_tr, flow_tr, client_tr, server_windows_tr = load_or_generate_h5data(args.train_h5data, args.train_data,
 | 
						|
                                                                               args.domain_length, args.window)
 | 
						|
 | 
						|
    # parameter
 | 
						|
    p = {
 | 
						|
        "type": args.model_type,
 | 
						|
        "batch_size": 64,
 | 
						|
        "window_size": args.window,
 | 
						|
        "domain_length": args.domain_length,
 | 
						|
        "flow_features": 3,
 | 
						|
        "vocab_size": len(char_dict) + 1,
 | 
						|
        #
 | 
						|
        'dropout': 0.5,
 | 
						|
        'domain_features': args.domain_embedding,
 | 
						|
        'embedding_size': args.embedding,
 | 
						|
        'filter_main': 64,
 | 
						|
        'flow_features': 3,
 | 
						|
        # 'dense_main': 512,
 | 
						|
        'dense_main': 64,
 | 
						|
        'filter_embedding': args.hidden_char_dims,
 | 
						|
        'hidden_embedding': args.domain_embedding,
 | 
						|
        'kernel_embedding': 3,
 | 
						|
        'kernels_main': 3,
 | 
						|
        'input_length': 40
 | 
						|
    }
 | 
						|
    if not param:
 | 
						|
        param = p
 | 
						|
 | 
						|
    embedding, model, _ = models.get_models_by_params(param)
 | 
						|
    embedding.summary()
 | 
						|
    model.summary()
 | 
						|
    logger.info("define callbacks")
 | 
						|
    callbacks = []
 | 
						|
    callbacks.append(ModelCheckpoint(filepath=args.clf_model,
 | 
						|
                                     monitor='val_loss',
 | 
						|
                                     verbose=False,
 | 
						|
                                     save_best_only=True))
 | 
						|
    callbacks.append(CSVLogger(args.train_log))
 | 
						|
    if args.stop_early:
 | 
						|
        callbacks.append(EarlyStopping(monitor='val_loss',
 | 
						|
                                       patience=5,
 | 
						|
                                       verbose=False))
 | 
						|
    logger.info("compile model")
 | 
						|
    custom_metrics = models.get_metric_functions()
 | 
						|
    model.compile(optimizer='adam',
 | 
						|
                  loss='binary_crossentropy',
 | 
						|
                  metrics=['accuracy'] + custom_metrics)
 | 
						|
 | 
						|
    server_tr = np.max(server_windows_tr, axis=1)
 | 
						|
 | 
						|
    if args.class_weights:
 | 
						|
        logger.info("class weights: compute custom weights")
 | 
						|
        custom_class_weights = get_custom_class_weights(client_tr, server_tr)
 | 
						|
        logger.info(custom_class_weights)
 | 
						|
    else:
 | 
						|
        logger.info("class weights: set default")
 | 
						|
        custom_class_weights = None
 | 
						|
    logger.info("start training")
 | 
						|
    model.fit([domain_tr, flow_tr],
 | 
						|
              [client_tr, server_tr],
 | 
						|
              batch_size=args.batch_size,
 | 
						|
              epochs=args.epochs,
 | 
						|
              callbacks=callbacks,
 | 
						|
              shuffle=True,
 | 
						|
              validation_split=0.2,
 | 
						|
              class_weight=custom_class_weights)
 | 
						|
    logger.info("save embedding")
 | 
						|
    embedding.save(args.embedding_model)
 | 
						|
 | 
						|
 | 
						|
def main_test():
 | 
						|
    domain_val, flow_val, client_val, server_val = load_or_generate_h5data(args.test_h5data, args.test_data,
 | 
						|
                                                                           args.domain_length, args.window)
 | 
						|
    clf = load_model(args.clf_model, custom_objects=models.get_metrics())
 | 
						|
    # stats = clf.evaluate([domain_val, flow_val],
 | 
						|
    #                      [client_val, server_val],
 | 
						|
    #                      batch_size=args.batch_size)
 | 
						|
    y_pred = clf.predict([domain_val, flow_val],
 | 
						|
                         batch_size=args.batch_size,
 | 
						|
                         verbose=1)
 | 
						|
    np.save(args.future_prediction, y_pred)
 | 
						|
 | 
						|
    char_dict = dataset.get_character_dict()
 | 
						|
    user_flow_df = dataset.get_user_flow_data(args.test_data)
 | 
						|
    domains = user_flow_df.domain.unique()[:-1]
 | 
						|
 | 
						|
    def get_domain_features_reduced(d):
 | 
						|
        return dataset.get_domain_features(d[0], char_dict, args.domain_length)
 | 
						|
 | 
						|
    domain_features = []
 | 
						|
    for ds in domains:
 | 
						|
        domain_features.append(np.apply_along_axis(get_domain_features_reduced, 2, np.atleast_3d(ds)))
 | 
						|
 | 
						|
    model = load_model(args.embedding_model)
 | 
						|
    domain_features = np.stack(domain_features).reshape((-1, 40))
 | 
						|
    pred = model.predict(domain_features, batch_size=args.batch_size, verbose=1)
 | 
						|
 | 
						|
    np.save("/tmp/rk/domains.npy", domains)
 | 
						|
    np.save("/tmp/rk/domain_features.npy", domain_features)
 | 
						|
    np.save("/tmp/rk/domain_embd.npy", pred)
 | 
						|
 | 
						|
 | 
						|
def main_new_model():
 | 
						|
    exists_or_make_path(args.model_path)
 | 
						|
 | 
						|
    char_dict = dataset.get_character_dict()
 | 
						|
    domain_tr, flow_tr, client_tr, server_windows_tr = load_or_generate_h5data(args.train_h5data, args.train_data,
 | 
						|
                                                                               args.domain_length, args.window)
 | 
						|
 | 
						|
    # parameter
 | 
						|
    p = {
 | 
						|
        "type": args.model_type,
 | 
						|
        "batch_size": 64,
 | 
						|
        "window_size": args.window,
 | 
						|
        "domain_length": args.domain_length,
 | 
						|
        "flow_features": 3,
 | 
						|
        "vocab_size": len(char_dict) + 1,
 | 
						|
        #
 | 
						|
        'dropout': 0.5,
 | 
						|
        'domain_features': args.domain_embedding,
 | 
						|
        'embedding_size': args.embedding,
 | 
						|
        'filter_main': 64,
 | 
						|
        'flow_features': 3,
 | 
						|
        # 'dense_main': 512,
 | 
						|
        'dense_main': 64,
 | 
						|
        'filter_embedding': args.hidden_char_dims,
 | 
						|
        'hidden_embedding': args.domain_embedding,
 | 
						|
        'kernel_embedding': 3,
 | 
						|
        'kernels_main': 3,
 | 
						|
        'input_length': 40
 | 
						|
    }
 | 
						|
 | 
						|
    embedding, _, model = models.get_models_by_params(p)
 | 
						|
    embedding.summary()
 | 
						|
    model.summary()
 | 
						|
    logger.info("define callbacks")
 | 
						|
    callbacks = []
 | 
						|
    callbacks.append(ModelCheckpoint(filepath=args.clf_model,
 | 
						|
                                     monitor='val_loss',
 | 
						|
                                     verbose=False,
 | 
						|
                                     save_best_only=True))
 | 
						|
    callbacks.append(CSVLogger(args.train_log))
 | 
						|
    if args.stop_early:
 | 
						|
        callbacks.append(EarlyStopping(monitor='val_loss',
 | 
						|
                                       patience=5,
 | 
						|
                                       verbose=False))
 | 
						|
    logger.info("compile model")
 | 
						|
    custom_metrics = models.get_metric_functions()
 | 
						|
    model.compile(optimizer='adam',
 | 
						|
                  loss='binary_crossentropy',
 | 
						|
                  metrics=['accuracy'] + custom_metrics)
 | 
						|
 | 
						|
    server_tr = np.max(server_windows_tr, axis=1)
 | 
						|
 | 
						|
    if args.class_weights:
 | 
						|
        logger.info("class weights: compute custom weights")
 | 
						|
        custom_class_weights = get_custom_class_weights(client_tr, server_tr)
 | 
						|
        logger.info(custom_class_weights)
 | 
						|
    else:
 | 
						|
        logger.info("class weights: set default")
 | 
						|
        custom_class_weights = None
 | 
						|
    logger.info("start training")
 | 
						|
    server_tr = np.expand_dims(server_windows_tr, 2)
 | 
						|
    model.fit([domain_tr, flow_tr],
 | 
						|
              [client_tr, server_tr],
 | 
						|
              batch_size=args.batch_size,
 | 
						|
              epochs=args.epochs,
 | 
						|
              callbacks=callbacks,
 | 
						|
              shuffle=True,
 | 
						|
              validation_split=0.2,
 | 
						|
              class_weight=custom_class_weights)
 | 
						|
    logger.info("save embedding")
 | 
						|
    embedding.save(args.embedding_model)
 | 
						|
 | 
						|
 | 
						|
def main_embedding():
 | 
						|
    model = load_model(args.embedding_model)
 | 
						|
    domain_encs, labels = dataset.load_or_generate_domains(args.train_data, args.domain_length)
 | 
						|
    domain_embedding = model.predict(domain_encs, batch_size=args.batch_size, verbose=1)
 | 
						|
    visualize.plot_embedding(domain_embedding, labels, path="results/pp3/embd.png")
 | 
						|
 | 
						|
 | 
						|
def main_visualization():
 | 
						|
    domain_val, flow_val, client_val, server_val = load_or_generate_h5data(args.test_h5data, args.test_data,
 | 
						|
                                                                           args.domain_length, args.window)
 | 
						|
    logger.info("plot model")
 | 
						|
    model = load_model(args.clf_model, custom_objects=models.get_metrics())
 | 
						|
    visualize.plot_model(model, os.path.join(args.model_path, "model.png"))
 | 
						|
    try:
 | 
						|
        logger.info("plot training curve")
 | 
						|
        logs = pd.read_csv(args.train_log)
 | 
						|
        visualize.plot_training_curve(logs, "client", "{}/client_train.png".format(args.model_path))
 | 
						|
        visualize.plot_training_curve(logs, "server", "{}/server_train.png".format(args.model_path))
 | 
						|
    except Exception as e:
 | 
						|
        logger.warning(f"could not generate training curves: {e}")
 | 
						|
 | 
						|
    client_pred, server_pred = np.load(args.future_prediction)
 | 
						|
    logger.info("plot pr curve")
 | 
						|
    visualize.plot_precision_recall(client_val.value, client_pred, "{}/client_prc.png".format(args.model_path))
 | 
						|
    visualize.plot_precision_recall(server_val.value, server_pred, "{}/server_prc.png".format(args.model_path))
 | 
						|
    visualize.plot_precision_recall_curves(client_val.value, client_pred, "{}/client_prc2.png".format(args.model_path))
 | 
						|
    visualize.plot_precision_recall_curves(server_val.value, server_pred, "{}/server_prc2.png".format(args.model_path))
 | 
						|
    logger.info("plot roc curve")
 | 
						|
    visualize.plot_roc_curve(client_val.value, client_pred, "{}/client_roc.png".format(args.model_path))
 | 
						|
    visualize.plot_roc_curve(server_val.value, server_pred, "{}/server_roc.png".format(args.model_path))
 | 
						|
    visualize.plot_confusion_matrix(client_val.value.argmax(1), client_pred.argmax(1),
 | 
						|
                                    "{}/client_cov.png".format(args.model_path),
 | 
						|
                                    normalize=False, title="Client Confusion Matrix")
 | 
						|
    visualize.plot_confusion_matrix(server_val.value.argmax(1), server_pred.argmax(1),
 | 
						|
                                    "{}/server_cov.png".format(args.model_path),
 | 
						|
                                    normalize=False, title="Server Confusion Matrix")
 | 
						|
 | 
						|
 | 
						|
def main_score():
 | 
						|
    # mask = dataset.load_mask_eval(args.data, args.test_image)
 | 
						|
    # pred = np.load(args.pred)
 | 
						|
    # visualize.score_model(mask, pred)
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
def main_data():
 | 
						|
    char_dict = dataset.get_character_dict()
 | 
						|
    user_flow_df = dataset.get_user_flow_data(args.train_data)
 | 
						|
    logger.info("create training dataset")
 | 
						|
    domain_tr, flow_tr, client_tr, server_tr, _ = dataset.create_dataset_from_flows(user_flow_df, char_dict,
 | 
						|
                                                                                    max_len=args.domain_length,
 | 
						|
                                                                                    window_size=args.window)
 | 
						|
    print(f"domain shape {domain_tr.shape}")
 | 
						|
    print(f"flow shape {flow_tr.shape}")
 | 
						|
    print(f"client shape {client_tr.shape}")
 | 
						|
    print(f"server shape {server_tr.shape}")
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    if "train" in args.modes:
 | 
						|
        main_train()
 | 
						|
    if "hyperband" in args.modes:
 | 
						|
        main_hyperband()
 | 
						|
    if "test" in args.modes:
 | 
						|
        main_test()
 | 
						|
    if "fancy" in args.modes:
 | 
						|
        main_visualization()
 | 
						|
    if "score" in args.modes:
 | 
						|
        main_score()
 | 
						|
    if "paul" in args.modes:
 | 
						|
        main_paul_best()
 | 
						|
    if "data" in args.modes:
 | 
						|
        main_data()
 | 
						|
    if "train_new" in args.modes:
 | 
						|
        main_new_model()
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    main()
 |