Compare commits

...

12 Commits

Author SHA1 Message Date
Patrick Lühne 285fa08e5a
Version bump for release 0.1.8 RC 1 2018-04-10 00:19:55 +02:00
Patrick Lühne dfffdcfce6
Add new simplification rule
This adds the rule “(not F or G) === (F -> G)” to the simplification
rule tableau.
2018-04-09 23:48:04 +02:00
Patrick Lühne 4967576b6c
Add new simplification rule
This adds the rule “(not (F and G)) === (not F or not G)” to the
simplification rule tableau.
2018-04-09 23:39:29 +02:00
Patrick Lühne 1c5851441d
Add new simplification rule
This adds the rule “not not F === F” to the simplification rule tableau.
2018-04-09 23:36:16 +02:00
Patrick Lühne b18ddcc575
Add new simplification rule
This adds the rule “(F <-> (F and G)) === (F -> G)” to the
simplification rule tableau.
2018-04-09 23:27:38 +02:00
Patrick Lühne 00ab975c2d
Iteratively apply simplification tableau rules
With this change, the tableau rules for simplifying formula are applied
iteratively until a fixpoint is reached.
2018-04-08 22:24:14 +02:00
Patrick Lühne e01b5dc561
Move simplification rule to tableau
This moves the rule “[primitive A] in [primitive B] === A = B” to the
simplification rule tableau.
2018-04-08 22:24:14 +02:00
Patrick Lühne 91529b84aa
Move simplification rule to tableau
This moves the rule “exists () (F) === F” to the simplification rule
tableau.
2018-04-08 22:24:14 +02:00
Patrick Lühne 1cbfd335a1
Move simplification rule to tableau
This moves the rule “[conjunction of only F] === F” to the
simplification rule tableau.
2018-04-08 22:24:14 +02:00
Patrick Lühne a86e978a5a
Move simplification rule to tableau
This moves the rule “exists ... ([#true/#false]) === [#true/#false]” to
the simplification rule tableau along with “[empty conjunction] ===
2018-04-08 22:24:14 +02:00
Patrick Lühne 5eb3ed5681
Move simplification rule to tableau
This moves the rule “exists X (X = t and F(X)) === exists () (F(t))” to
the simplification rule tableau.
2018-04-08 22:24:14 +02:00
Patrick Lühne 3d0266136c
Implement simplification rule tableau
This implements a tableau containing simplification rules that can be
iteratively applied to input formulas until they remain unchanged.

First, this moves the rule “exists X (X = Y) === #true” to the tableau
as a reference implementation.
2018-04-08 22:24:10 +02:00
10 changed files with 992 additions and 90 deletions

View File

@ -1,6 +1,10 @@
# Change Log
## (unreleased)
## 0.1.8 RC 1 (2018-04-10)
### Features
* more, advanced simplification rules
## 0.1.7 (2018-04-08)

View File

@ -70,7 +70,7 @@ int main(int argc, char **argv)
if (version)
{
std::cout << "anthem version 0.1.7+git" << std::endl;
std::cout << "anthem version 0.1.8-rc.1" << std::endl;
return EXIT_SUCCESS;
}

View File

@ -3,3 +3,5 @@ covered(I) :- in(I, S).
:- I = 1..n, not covered(I).
:- in(I, S), in(J, S), in(I + J, S).
#show in/2.

417
include/anthem/Equality.h Normal file
View File

@ -0,0 +1,417 @@
#ifndef __ANTHEM__EQUALITY_H
#define __ANTHEM__EQUALITY_H
#include <anthem/AST.h>
#include <anthem/ASTUtils.h>
namespace anthem
{
namespace ast
{
////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Equality
//
////////////////////////////////////////////////////////////////////////////////////////////////////
// TODO: move to separate class
enum class Tristate
{
True,
False,
Unknown,
};
////////////////////////////////////////////////////////////////////////////////////////////////////
Tristate equal(const Formula &lhs, const Formula &rhs);
Tristate equal(const Term &lhs, const Term &rhs);
////////////////////////////////////////////////////////////////////////////////////////////////////
struct FormulaEqualityVisitor
{
Tristate visit(const And &and_, const Formula &otherFormula)
{
if (!otherFormula.is<And>())
return Tristate::Unknown;
const auto &otherAnd = otherFormula.get<And>();
for (const auto &argument : and_.arguments)
{
const auto match = std::find_if(
otherAnd.arguments.cbegin(), otherAnd.arguments.cend(),
[&](const auto &otherArgument)
{
return equal(argument, otherArgument) == Tristate::True;
});
if (match == otherAnd.arguments.cend())
return Tristate::Unknown;
}
for (const auto &otherArgument : otherAnd.arguments)
{
const auto match = std::find_if(
and_.arguments.cbegin(), and_.arguments.cend(),
[&](const auto &argument)
{
return equal(otherArgument, argument) == Tristate::True;
});
if (match == and_.arguments.cend())
return Tristate::Unknown;
}
return Tristate::True;
}
Tristate visit(const Biconditional &biconditional, const Formula &otherFormula)
{
if (!otherFormula.is<Biconditional>())
return Tristate::Unknown;
const auto &otherBiconditional = otherFormula.get<Biconditional>();
if (equal(biconditional.left, otherBiconditional.left) == Tristate::True
&& equal(biconditional.right, otherBiconditional.right) == Tristate::True)
{
return Tristate::True;
}
if (equal(biconditional.left, otherBiconditional.right) == Tristate::True
&& equal(biconditional.right, otherBiconditional.left) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const Boolean &boolean, const Formula &otherFormula)
{
if (!otherFormula.is<Boolean>())
return Tristate::Unknown;
const auto &otherBoolean = otherFormula.get<Boolean>();
return (boolean.value == otherBoolean.value)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Comparison &comparison, const Formula &otherFormula)
{
if (!otherFormula.is<Comparison>())
return Tristate::Unknown;
const auto &otherComparison = otherFormula.get<Comparison>();
if (comparison.operator_ != otherComparison.operator_)
return Tristate::Unknown;
if (equal(comparison.left, otherComparison.left) == Tristate::True
&& equal(comparison.right, otherComparison.right) == Tristate::True)
{
return Tristate::True;
}
// Only = and != are commutative operators, all others dont need to be checked with exchanged arguments
if (comparison.operator_ != Comparison::Operator::Equal
&& comparison.operator_ != Comparison::Operator::NotEqual)
{
return Tristate::Unknown;
}
if (equal(comparison.left, otherComparison.right) == Tristate::True
&& equal(comparison.right, otherComparison.left) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const Exists &, const Formula &otherFormula)
{
if (!otherFormula.is<Exists>())
return Tristate::Unknown;
// TODO: implement stronger check
return Tristate::Unknown;
}
Tristate visit(const ForAll &, const Formula &otherFormula)
{
if (!otherFormula.is<ForAll>())
return Tristate::Unknown;
// TODO: implement stronger check
return Tristate::Unknown;
}
Tristate visit(const Implies &implies, const Formula &otherFormula)
{
if (!otherFormula.is<Implies>())
return Tristate::Unknown;
const auto &otherImplies = otherFormula.get<Implies>();
if (equal(implies.antecedent, otherImplies.antecedent) == Tristate::True
&& equal(implies.consequent, otherImplies.consequent) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const In &in, const Formula &otherFormula)
{
if (!otherFormula.is<In>())
return Tristate::Unknown;
const auto &otherIn = otherFormula.get<In>();
if (equal(in.element, otherIn.element) == Tristate::True
&& equal(in.set, otherIn.set) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const Not &not_, const Formula &otherFormula)
{
if (!otherFormula.is<Not>())
return Tristate::Unknown;
const auto &otherNot = otherFormula.get<Not>();
return equal(not_.argument, otherNot.argument);
}
Tristate visit(const Or &or_, const Formula &otherFormula)
{
if (!otherFormula.is<Or>())
return Tristate::Unknown;
const auto &otherOr = otherFormula.get<Or>();
for (const auto &argument : or_.arguments)
{
const auto match = std::find_if(
otherOr.arguments.cbegin(), otherOr.arguments.cend(),
[&](const auto &otherArgument)
{
return equal(argument, otherArgument) == Tristate::True;
});
if (match == otherOr.arguments.cend())
return Tristate::Unknown;
}
for (const auto &otherArgument : otherOr.arguments)
{
const auto match = std::find_if(
or_.arguments.cbegin(), or_.arguments.cend(),
[&](const auto &argument)
{
return equal(otherArgument, argument) == Tristate::True;
});
if (match == or_.arguments.cend())
return Tristate::Unknown;
}
return Tristate::True;
}
Tristate visit(const Predicate &predicate, const Formula &otherFormula)
{
if (!otherFormula.is<Predicate>())
return Tristate::Unknown;
const auto &otherPredicate = otherFormula.get<Predicate>();
if (!matches(predicate, otherPredicate))
return Tristate::False;
assert(predicate.arguments.size() == otherPredicate.arguments.size());
for (size_t i = 0; i < predicate.arguments.size(); i++)
if (equal(predicate.arguments[i], otherPredicate.arguments[i]) != Tristate::True)
return Tristate::Unknown;
return Tristate::True;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct TermEqualityVisitor
{
Tristate visit(const BinaryOperation &binaryOperation, const Term &otherTerm)
{
if (!otherTerm.is<BinaryOperation>())
return Tristate::Unknown;
const auto &otherBinaryOperation = otherTerm.get<BinaryOperation>();
if (binaryOperation.operator_ != otherBinaryOperation.operator_)
return Tristate::Unknown;
if (equal(binaryOperation.left, otherBinaryOperation.left) == Tristate::True
&& equal(binaryOperation.right, otherBinaryOperation.right) == Tristate::True)
{
return Tristate::True;
}
// Only + and * are commutative operators, all others dont need to be checked with exchanged arguments
if (binaryOperation.operator_ != BinaryOperation::Operator::Plus
&& binaryOperation.operator_ != BinaryOperation::Operator::Multiplication)
{
return Tristate::Unknown;
}
if (equal(binaryOperation.left, binaryOperation.right) == Tristate::True
&& equal(binaryOperation.right, binaryOperation.left) == Tristate::True)
{
return Tristate::True;
}
return Tristate::Unknown;
}
Tristate visit(const Boolean &boolean, const Term &otherTerm)
{
if (!otherTerm.is<Boolean>())
return Tristate::Unknown;
const auto &otherBoolean = otherTerm.get<Boolean>();
return (boolean.value == otherBoolean.value)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Constant &constant, const Term &otherTerm)
{
if (!otherTerm.is<Constant>())
return Tristate::Unknown;
const auto &otherConstant = otherTerm.get<Constant>();
return (constant.name == otherConstant.name)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Function &function, const Term &otherTerm)
{
if (!otherTerm.is<Function>())
return Tristate::Unknown;
const auto &otherFunction = otherTerm.get<Function>();
if (function.name != otherFunction.name)
return Tristate::False;
if (function.arguments.size() != otherFunction.arguments.size())
return Tristate::False;
for (size_t i = 0; i < function.arguments.size(); i++)
if (equal(function.arguments[i], otherFunction.arguments[i]) != Tristate::True)
return Tristate::Unknown;
return Tristate::True;
}
Tristate visit(const Integer &integer, const Term &otherTerm)
{
if (!otherTerm.is<Integer>())
return Tristate::Unknown;
const auto &otherInteger = otherTerm.get<Integer>();
return (integer.value == otherInteger.value)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Interval &interval, const Term &otherTerm)
{
if (!otherTerm.is<Interval>())
return Tristate::Unknown;
const auto &otherInterval = otherTerm.get<Interval>();
if (equal(interval.from, otherInterval.from) != Tristate::True)
return Tristate::Unknown;
if (equal(interval.to, otherInterval.to) != Tristate::True)
return Tristate::Unknown;
return Tristate::True;
}
Tristate visit(const SpecialInteger &specialInteger, const Term &otherTerm)
{
if (!otherTerm.is<SpecialInteger>())
return Tristate::Unknown;
const auto &otherSpecialInteger = otherTerm.get<SpecialInteger>();
return (specialInteger.type == otherSpecialInteger.type)
? Tristate::True
: Tristate::False;
}
Tristate visit(const String &string, const Term &otherTerm)
{
if (!otherTerm.is<String>())
return Tristate::Unknown;
const auto &otherString = otherTerm.get<String>();
return (string.text == otherString.text)
? Tristate::True
: Tristate::False;
}
Tristate visit(const Variable &variable, const Term &otherTerm)
{
if (!otherTerm.is<Variable>())
return Tristate::Unknown;
const auto &otherVariable = otherTerm.get<Variable>();
return (variable.declaration == otherVariable.declaration)
? Tristate::True
: Tristate::False;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
Tristate equal(const Formula &lhs, const Formula &rhs)
{
return lhs.accept(FormulaEqualityVisitor(), rhs);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
Tristate equal(const Term &lhs, const Term &rhs)
{
return lhs.accept(TermEqualityVisitor(), rhs);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
}
}
#endif

View File

@ -12,6 +12,14 @@ namespace anthem
//
////////////////////////////////////////////////////////////////////////////////////////////////////
enum class SimplificationResult
{
Simplified,
Unchanged,
};
////////////////////////////////////////////////////////////////////////////////////////////////////
void simplify(ast::Formula &formula);
////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,198 @@
#ifndef __ANTHEM__SIMPLIFICATION_VISITORS_H
#define __ANTHEM__SIMPLIFICATION_VISITORS_H
#include <anthem/AST.h>
#include <anthem/Simplification.h>
namespace anthem
{
namespace ast
{
////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Simplification Visitor
//
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class T>
struct FormulaSimplificationVisitor
{
template <class... Arguments>
SimplificationResult visit(And &and_, Formula &formula, Arguments &&... arguments)
{
for (auto &argument : and_.arguments)
if (argument.accept(*this, argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Biconditional &biconditional, Formula &formula, Arguments &&... arguments)
{
if (biconditional.left.accept(*this, biconditional.left, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
if (biconditional.right.accept(*this, biconditional.right, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Boolean &, Formula &formula, Arguments &&... arguments)
{
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Comparison &, Formula &formula, Arguments &&... arguments)
{
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Exists &exists, Formula &formula, Arguments &&... arguments)
{
if (exists.argument.accept(*this, exists.argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(ForAll &forAll, Formula &formula, Arguments &&... arguments)
{
if (forAll.argument.accept(*this, forAll.argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Implies &implies, Formula &formula, Arguments &&... arguments)
{
if (implies.antecedent.accept(*this, implies.antecedent, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
if (implies.consequent.accept(*this, implies.consequent, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(In &, Formula &formula, Arguments &&... arguments)
{
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Not &not_, Formula &formula, Arguments &&... arguments)
{
if (not_.argument.accept(*this, not_.argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Or &or_, Formula &formula, Arguments &&... arguments)
{
for (auto &argument : or_.arguments)
if (argument.accept(*this, argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Predicate &, Formula &formula, Arguments &&... arguments)
{
return T::accept(formula, std::forward<Arguments>(arguments)...);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class T, class SimplificationResult = void>
struct TermSimplificationVisitor
{
template <class... Arguments>
SimplificationResult visit(BinaryOperation &binaryOperation, Term &term, Arguments &&... arguments)
{
if (binaryOperation.left.accept(*this, binaryOperation.left, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
if (binaryOperation.right.accept(*this, binaryOperation.right, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Boolean &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Constant &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Function &function, Term &term, Arguments &&... arguments)
{
for (auto &argument : function.arguments)
if (argument.accept(*this, argument, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Integer &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Interval &interval, Term &term, Arguments &&... arguments)
{
if (interval.from.accept(*this, interval.from, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
if (interval.to.accept(*this, interval.to, std::forward<Arguments>(arguments)...) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(SpecialInteger &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(String &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
template <class... Arguments>
SimplificationResult visit(Variable &, Term &term, Arguments &&... arguments)
{
return T::accept(term, std::forward<Arguments>(arguments)...);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
}
}
#endif

View File

@ -3,7 +3,9 @@
#include <optional>
#include <anthem/ASTCopy.h>
#include <anthem/ASTVisitors.h>
#include <anthem/Equality.h>
#include <anthem/output/AST.h>
#include <anthem/SimplificationVisitors.h>
namespace anthem
{
@ -97,18 +99,65 @@ struct ReplaceVariableInFormulaVisitor : public ast::RecursiveFormulaVisitor<Rep
////////////////////////////////////////////////////////////////////////////////////////////////////
// Simplifies exists statements by using the equivalence “exists X (X = t and F(X))” == “F(t)”
// The exists statement has to be of the form “exists <variables> <conjunction>”
void simplify(ast::Exists &exists, ast::Formula &formula)
template<class SimplificationRule>
SimplificationResult simplify(ast::Formula &formula)
{
// Simplify formulas like “exists X (X = Y)” to “#true”
// TODO: check that this covers all cases
if (exists.argument.is<ast::Comparison>())
return SimplificationRule::apply(formula);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<class FirstSimplificationRule, class SecondSimplificationRule, class... OtherSimplificationRules>
SimplificationResult simplify(ast::Formula &formula)
{
if (simplify<FirstSimplificationRule>(formula) == SimplificationResult::Simplified)
return SimplificationResult::Simplified;
return simplify<SecondSimplificationRule, OtherSimplificationRules...>(formula);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleExistsWithoutQuantifiedVariables
{
static constexpr const auto Description = "exists () (F) === F";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Exists>())
return SimplificationResult::Unchanged;
auto &exists = formula.get<ast::Exists>();
if (!exists.variables.empty())
return SimplificationResult::Unchanged;
formula = std::move(exists.argument);
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleTrivialAssignmentInExists
{
static constexpr const auto Description = "exists X (X = Y) === #true";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Exists>())
return SimplificationResult::Unchanged;
const auto &exists = formula.get<ast::Exists>();
if (!exists.argument.is<ast::Comparison>())
return SimplificationResult::Unchanged;
const auto &comparison = exists.argument.get<ast::Comparison>();
if (comparison.operator_ != ast::Comparison::Operator::Equal)
return;
return SimplificationResult::Unchanged;
const auto matchingAssignment = std::find_if(exists.variables.cbegin(), exists.variables.cend(),
[&](const auto &variableDeclaration)
@ -117,107 +166,331 @@ void simplify(ast::Exists &exists, ast::Formula &formula)
|| matchesVariableDeclaration(comparison.right, *variableDeclaration);
});
if (matchingAssignment != exists.variables.cend())
formula = ast::Formula::make<ast::Boolean>(true);
if (matchingAssignment == exists.variables.cend())
return SimplificationResult::Unchanged;
return;
formula = ast::Formula::make<ast::Boolean>(true);
return SimplificationResult::Simplified;
}
};
if (!exists.argument.is<ast::And>())
return;
////////////////////////////////////////////////////////////////////////////////////////////////////
auto &conjunction = exists.argument.get<ast::And>();
auto &arguments = conjunction.arguments;
struct SimplificationRuleAssignmentInExists
{
static constexpr const auto Description = "exists X (X = t and F(X)) === exists () (F(t))";
// Simplify formulas of type “exists X (X = t and F(X))” to “F(t)”
for (auto i = exists.variables.begin(); i != exists.variables.end();)
static SimplificationResult apply(ast::Formula &formula)
{
const auto &variableDeclaration = **i;
if (!formula.is<ast::Exists>())
return SimplificationResult::Unchanged;
bool wasVariableReplaced = false;
auto &exists = formula.get<ast::Exists>();
// TODO: refactor
for (auto j = arguments.begin(); j != arguments.end(); j++)
if (!exists.argument.is<ast::And>())
return SimplificationResult::Unchanged;
auto &and_ = exists.argument.get<ast::And>();
auto &arguments = and_.arguments;
auto simplificationResult = SimplificationResult::Unchanged;
for (auto i = exists.variables.begin(); i != exists.variables.end();)
{
auto &argument = *j;
// Find term that is equivalent to the given variable
auto assignedTerm = extractAssignedTerm(argument, variableDeclaration);
const auto &variableDeclaration = **i;
if (!assignedTerm)
continue;
bool wasVariableReplaced = false;
// Replace all occurrences of the variable with the equivalent term
for (auto k = arguments.begin(); k != arguments.end(); k++)
// TODO: refactor
for (auto j = arguments.begin(); j != arguments.end(); j++)
{
if (k == j)
auto &argument = *j;
// Find term that is equivalent to the given variable
auto assignedTerm = extractAssignedTerm(argument, variableDeclaration);
if (!assignedTerm)
continue;
auto &otherArgument = *k;
otherArgument.accept(ReplaceVariableInFormulaVisitor(), otherArgument, variableDeclaration, assignedTerm.value());
// Replace all occurrences of the variable with the equivalent term
for (auto k = arguments.begin(); k != arguments.end(); k++)
{
if (k == j)
continue;
auto &otherArgument = *k;
otherArgument.accept(ReplaceVariableInFormulaVisitor(), otherArgument, variableDeclaration, assignedTerm.value());
}
arguments.erase(j);
wasVariableReplaced = true;
simplificationResult = SimplificationResult::Simplified;
break;
}
arguments.erase(j);
wasVariableReplaced = true;
break;
if (wasVariableReplaced)
{
i = exists.variables.erase(i);
continue;
}
i++;
}
if (wasVariableReplaced)
{
i = exists.variables.erase(i);
continue;
}
i++;
return simplificationResult;
}
};
// If there are no arguments left, we had a formula of the form “exists X1, ..., Xn (X1 = Y1 and ... and Xn = Yn)”
// Such exists statements are useless and can be safely replaced with “#true”
if (arguments.empty())
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleEmptyConjunction
{
static constexpr const auto Description = "[empty conjunction] === #true";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::And>())
return SimplificationResult::Unchanged;
auto &and_ = formula.get<ast::And>();
if (!and_.arguments.empty())
return SimplificationResult::Unchanged;
formula = ast::Formula::make<ast::Boolean>(true);
return;
return SimplificationResult::Simplified;
}
};
// If the argument now is a conjunction with just one element, directly replace the input formula with the argument
if (arguments.size() == 1)
exists.argument = std::move(arguments.front());
////////////////////////////////////////////////////////////////////////////////////////////////////
// If there are still remaining variables, simplification is over
if (!exists.variables.empty())
return;
struct SimplificationRuleOneElementConjunction
{
static constexpr const auto Description = "[conjunction of only F] === F";
assert(!arguments.empty());
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::And>())
return SimplificationResult::Unchanged;
// If there is more than one element in the conjunction, replace the input formula with the conjunction
formula = std::move(exists.argument);
}
auto &and_ = formula.get<ast::And>();
if (and_.arguments.size() != 1)
return SimplificationResult::Unchanged;
formula = std::move(and_.arguments.front());
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleTrivialExists
{
static constexpr const auto Description = "exists ... ([#true/#false]) === [#true/#false]";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Exists>())
return SimplificationResult::Unchanged;
auto &exists = formula.get<ast::Exists>();
if (!exists.argument.is<ast::Boolean>())
return SimplificationResult::Unchanged;
formula = std::move(exists.argument);
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleInWithPrimitiveArguments
{
static constexpr const auto Description = "[primitive A] in [primitive B] === A = B";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::In>())
return SimplificationResult::Unchanged;
auto &in = formula.get<ast::In>();
assert(ast::isPrimitive(in.element));
if (!ast::isPrimitive(in.element) || !ast::isPrimitive(in.set))
return SimplificationResult::Unchanged;
formula = ast::Comparison(ast::Comparison::Operator::Equal, std::move(in.element), std::move(in.set));
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleSubsumptionInBiconditionals
{
static constexpr const auto Description = "(F <-> (F and G)) === (F -> G)";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Biconditional>())
return SimplificationResult::Unchanged;
auto &biconditional = formula.get<ast::Biconditional>();
const auto leftIsPredicate = biconditional.left.is<ast::Predicate>();
const auto rightIsPredicate = biconditional.right.is<ast::Predicate>();
const auto leftIsAnd = biconditional.left.is<ast::And>();
const auto rightIsAnd = biconditional.right.is<ast::And>();
if (!(leftIsPredicate && rightIsAnd) && !(rightIsPredicate && leftIsAnd))
return SimplificationResult::Unchanged;
auto &predicateSide = (leftIsPredicate ? biconditional.left : biconditional.right);
auto &andSide = (leftIsPredicate ? biconditional.right : biconditional.left);
auto &and_ = andSide.get<ast::And>();
const auto matchingPredicate =
std::find_if(and_.arguments.cbegin(), and_.arguments.cend(),
[&](const auto &argument)
{
return (ast::equal(predicateSide, argument) == ast::Tristate::True);
});
if (matchingPredicate == and_.arguments.cend())
return SimplificationResult::Unchanged;
and_.arguments.erase(matchingPredicate);
formula = ast::Formula::make<ast::Implies>(std::move(predicateSide), std::move(andSide));
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleDoubleNegation
{
static constexpr const auto Description = "not not F === F";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Not>())
return SimplificationResult::Unchanged;
auto &not_ = formula.get<ast::Not>();
if (!not_.argument.is<ast::Not>())
return SimplificationResult::Unchanged;
auto &notNot = not_.argument.get<ast::Not>();
formula = std::move(notNot.argument);
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleDeMorganForConjunctions
{
static constexpr const auto Description = "(not (F and G)) === (not F or not G)";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Not>())
return SimplificationResult::Unchanged;
auto &not_ = formula.get<ast::Not>();
if (!not_.argument.is<ast::And>())
return SimplificationResult::Unchanged;
auto &and_ = not_.argument.get<ast::And>();
for (auto &argument : and_.arguments)
argument = ast::Formula::make<ast::Not>(std::move(argument));
formula = ast::Formula::make<ast::Or>(std::move(and_.arguments));
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct SimplificationRuleImplicationFromDisjunction
{
static constexpr const auto Description = "(not F or G) === (F -> G)";
static SimplificationResult apply(ast::Formula &formula)
{
if (!formula.is<ast::Or>())
return SimplificationResult::Unchanged;
auto &or_ = formula.get<ast::Or>();
if (or_.arguments.size() != 2)
return SimplificationResult::Unchanged;
const auto leftIsNot = or_.arguments[0].is<ast::Not>();
const auto rightIsNot = or_.arguments[1].is<ast::Not>();
if (leftIsNot == rightIsNot)
return SimplificationResult::Unchanged;
auto &negativeSide = leftIsNot ? or_.arguments[0] : or_.arguments[1];
auto &positiveSide = leftIsNot ? or_.arguments[1] : or_.arguments[0];
assert(negativeSide.is<ast::Not>());
assert(!positiveSide.is<ast::Not>());
auto &negativeSideArgument = negativeSide.get<ast::Not>().argument;
formula = ast::Formula::make<ast::Implies>(std::move(negativeSideArgument), std::move(positiveSide));
return SimplificationResult::Simplified;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
const auto simplifyWithDefaultRules =
simplify
<
SimplificationRuleDoubleNegation,
SimplificationRuleTrivialAssignmentInExists,
SimplificationRuleAssignmentInExists,
SimplificationRuleEmptyConjunction,
SimplificationRuleTrivialExists,
SimplificationRuleOneElementConjunction,
SimplificationRuleExistsWithoutQuantifiedVariables,
SimplificationRuleInWithPrimitiveArguments,
SimplificationRuleSubsumptionInBiconditionals,
SimplificationRuleDeMorganForConjunctions,
SimplificationRuleImplicationFromDisjunction
>;
////////////////////////////////////////////////////////////////////////////////////////////////////
// Performs the different simplification techniques
struct SimplifyFormulaVisitor : public ast::RecursiveFormulaVisitor<SimplifyFormulaVisitor>
struct SimplifyFormulaVisitor : public ast::FormulaSimplificationVisitor<SimplifyFormulaVisitor>
{
// Forward exists statements to the dedicated simplification function
static void accept(ast::Exists &exists, ast::Formula &formula)
{
simplify(exists, formula);
}
// Simplify formulas of type “A in B” to “A = B” if A and B are primitive
static void accept(ast::In &in, ast::Formula &formula)
{
assert(ast::isPrimitive(in.element));
if (!ast::isPrimitive(in.element) || !ast::isPrimitive(in.set))
return;
formula = ast::Comparison(ast::Comparison::Operator::Equal, std::move(in.element), std::move(in.set));
}
// Do nothing for all other types of expressions
template<class T>
static void accept(T &, ast::Formula &)
static SimplificationResult accept(ast::Formula &formula)
{
return simplifyWithDefaultRules(formula);
}
};
@ -225,7 +498,7 @@ struct SimplifyFormulaVisitor : public ast::RecursiveFormulaVisitor<SimplifyForm
void simplify(ast::Formula &formula)
{
formula.accept(SimplifyFormulaVisitor(), formula);
while (formula.accept(SimplifyFormulaVisitor(), formula) == SimplificationResult::Simplified);
}
////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -152,9 +152,9 @@ TEST_CASE("[completion] Rules are completed", "[completion]")
CHECK(output.str() ==
"forall V1 (covered(V1) <-> exists U1 in(V1, U1))\n"
"forall V2, V3 (in(V2, V3) <-> (V2 in 1..n and V3 in 1..r and in(V2, V3)))\n"
"forall U2 not (U2 in 1..n and not covered(U2))\n"
"forall U3, U4, U5 not (in(U3, U4) and in(U5, U4) and exists X1 (X1 in (U3 + U5) and in(X1, U4)))\n");
"forall V2, V3 (in(V2, V3) -> (V2 in 1..n and V3 in 1..r))\n"
"forall U2 (U2 in 1..n -> covered(U2))\n"
"forall U3, U4, U5 (not in(U3, U4) or not in(U5, U4) or not exists X1 (X1 in (U3 + U5) and in(X1, U4)))\n");
}
SECTION("binary operations with multiple variables")

View File

@ -103,9 +103,10 @@ TEST_CASE("[hidden predicate elimination] Hidden predicates are correctly elimin
"#show a/1.";
anthem::translate("input", input, context);
// TODO: simplify further
CHECK(output.str() ==
"forall V1 (a(V1) <-> not d(V1))\n"
"forall V2 (d(V2) <-> not not d(V2))\n"
"forall V2 (d(V2) <-> d(V2))\n"
"forall V3 (e(V3) <-> e(V3))\n");
}
@ -164,12 +165,11 @@ TEST_CASE("[hidden predicate elimination] Hidden predicates are correctly elimin
"#show t/0.";
anthem::translate("input", input, context);
// TODO: simplify further
CHECK(output.str() ==
"(s <-> (not #false and s))\n"
"(t <-> (not #false and t))\n"
"not (s and not t)\n"
"not (not #false and not #false and #false)\n");
"(s -> not #false)\n"
"(t -> not #false)\n"
"(s -> t)\n"
"(#false or #false or not #false)\n");
}
SECTION("predicate with more than one argument is hidden correctly")

View File

@ -55,8 +55,8 @@ TEST_CASE("[placeholders] Programs with placeholders are correctly completed", "
anthem::translate("input", input, context);
CHECK(output.str() ==
"forall V1, V2 (color(V1, V2) <-> (vertex(V1) and color(V2) and color(V1, V2)))\n"
"forall U1 not (vertex(U1) and not exists U2 color(U1, U2))\n"
"forall U3, U4, U5 not (color(U3, U4) and color(U5, U4) and edge(U3, U5))\n");
"forall V1, V2 (color(V1, V2) -> (vertex(V1) and color(V2)))\n"
"forall U1 (vertex(U1) -> exists U2 color(U1, U2))\n"
"forall U3, U4, U5 (not color(U3, U4) or not color(U5, U4) or not edge(U3, U5))\n");
}
}